作物杂志,2024, 第3期: 1–7 doi: 10.16035/j.issn.1001-7283.2024.03.001

• 专题综述 •    下一篇

水稻白叶枯病抗性基因的研究及应用进展

陈洛1(), 朱稳1, 李雯慧2, 赵均良2, 周玲艳1(), 杨武2()   

  1. 1仲恺农业工程学院农业与生物学院,510225,广东广州
    2广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室/广东省水稻工程实验室/农业农村部华南优质稻遗传育种实验室(部省共建),510640,广东广州
  • 收稿日期:2023-03-09 修回日期:2023-05-01 出版日期:2024-06-15 发布日期:2024-06-18
  • 通讯作者: 杨武,研究方向为水稻分子育种,E-mail:yangwu@gdaas.cn;周玲艳,研究方向为植物生物技术,E-mail:lingyanzh@163.com
  • 作者简介:陈洛,研究方向为水稻稻米品质,E-mail:13229416940@163.com
  • 基金资助:
    广东省农业科学院科技创新战略专项资金(高水平农科院建设)(R2023PY-JX001);广东省农业科学院科技创新战略专项资金(高水平农科院建设)(R2021PY-QF002);广东省水稻育种新技术重点实验室(2020B1212060047)

Advances in Research and Application of Rice Bacterial Blight Resistance Genes

Chen Luo1(), Zhu Wen1, Li Wenhui2, Zhao Junliang2, Zhou Lingyan1(), Yang Wu2()   

  1. 1College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,Guangdong, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of New Technology in Rice Breeding / Guangdong Rice Engineering Laboratory / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
  • Received:2023-03-09 Revised:2023-05-01 Online:2024-06-15 Published:2024-06-18

摘要:

水稻是最重要的粮食作物之一。由革兰氏阴性菌黄单胞杆菌水稻致病变种(Xanthomonas oryzae pv. oryzaeXoo)引发的水稻白叶枯病是最古老和严重危害水稻安全生产的一种细菌性病害,具有突变性强、传播快和分布广等特点。发掘和鉴定新抗原,利用抗性基因培育抗病品种是防治白叶枯病的有效途径。截至目前,已有49个水稻白叶枯病抗性基因被鉴定,其中42个抗性基因已被定位,包括28个显性基因和14个隐性基因,17个抗性基因已被成功克隆。这些抗性基因的表达与否、或与病原菌表达蛋白的互作是产生抗性的关键。本文对水稻白叶枯病抗性基因的研究和育种应用进展进行了综述,并提出展望,为水稻抗白叶枯病的研究和分子育种提供参考。

关键词: 水稻, 白叶枯病, 抗性基因, 分子育种

Abstract:

Rice is one of the most important food crops. Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the oldest and most serious bacterial diseases that endangers the safe production of rice. The Xoo, which has the characteristics of strong mutability, rapid spread and wide distribution. It is an effective way to control bacterial blight by discovering and identifying resistance genes and breeding resistant varieties with them. Up to now, 49 resistance genes related to rice bacterial blight have been identified, among which 42 resistance genes have been located, including 28 dominant genes and 14 recessive genes. 17 resistance genes have been successfully cloned. The expression of resistance genes or interactions between resistance genes and proteins expressed by pathogen is the key to induce resistance. In this paper, the research and breeding application progress of rice bacterial blight resistance genes were reviewed and prospects. The aim of this paper is to provide valuable information for the further study and molecular breeding of rice bacterial blight.

Key words: Rice, Bacterial blight, Resistance gene, Molecular breeding

表1

已克隆和进行功能研究的白叶枯病抗性基因

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
基因座
Gene locus
功能特点
Function characteristic
参考文献
Reference
Xa1
+
4
LOC_Os04g53120
Xa1是NBS-LRR类成员,在病原体和伤口接种下被诱导表达 [6]
Xa2 + 4 LOC_Os04g53120 Xa2Xa14Xa31(t)Xa45(t)均是Xa1的等位基因,能被任一典型结构的TALE激活抗性(ETI)并被iTALE所抑制(ETS)

[5]



Xa14 + 4 LOC_Os04g53120
Xa31(t) + 4 LOC_Os04g53120
Xa45(t) + 4 LOC_Os04g53120
Xa3/Xa26

+

11

LOC_Os11g47000

Xa3/Xa26是组成型表达基因,编码LRR受体激酶蛋白,抗病Xa3/Xa26和感病xa3/xa26蛋白序列的差异导致了抗性的差异 [7]

Xa4
+
11
LOC_Os11g47140
Xa4编码细胞壁相关激酶,通过加强细胞壁增加机械强度并降低植株高度 [8]
xa5

-

5

LOC_Os05g01710

xa5编码一个真核生物转录因子ⅡA伽马亚基(TFⅡAγ),抗病xa5与感病Xa5的蛋白序列存在1个氨基酸变异是导致抗性差异的原因 [9]

Xa7

+

6

日本晴中缺失该基因位点,镇恢084的6号染色体上M10标记左侧28 kb内的G1基因即Xa7 Xa7受AvrXa7和PthXo3效应子诱导表达,进而产生抗性
[10]

Xa10

+

11

LOC_Os11g37570

Xa10启动子区域含有特异激活Xa10表达的AvrXa10结合元件,Xa10表达导致细胞程序性死亡 [11]

xa13
-
8
LOC_Os08g42350
隐性xa13的启动子突变导致宿主与病原体相互作用时该基因表达下调,进而产生抗性 [12]
Xa21
+
11
LOC_Os11g35500
Xa21编码类受体激酶蛋白,与激活因子AvrXa21共同调控白叶枯病的抗性 [13]
Xa23
+
11
LOC_Os11g37620
Xa23启动子区含有AvrXa23结合元件,能够特异激活Xa23的表达,进而引发超敏反应 [14]
xa25
-
12
LOC_Os12g29220
xa25编码MtN3/saliva家族的一员,对菲律宾小种PXO339表现专抗 [15]
Xa27 + 6 LOC_Os06g39810 Xa27表达依赖于携带avrXa27的病菌侵染 [16]
xa41(t)
-
11
LOC_Os11g31190
xa41(t)启动子区18个碱基的缺失与抗性密切相关 [17]
Xa47(t)a
+
11
LOC_Os11g46200
Xa47(t)aXa47(t)的A基因型,编码NLR类蛋白,受病原菌诱导表达 [18]

表2

已定位的白叶枯病抗性基因

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
连锁标记或位置
Linked marker or position
候选基因
Candidate gene
参考文献
Reference
xa8
-
7
RM21044 (7.0 cM), RM21045 (9.9 cM)
LOC_Os07g07400, LOC_Os07g07410,
LOC_Os07g07420
[23]
Xa11 + 3 RM347 (2.0 cM), KUX11 (1.0 cM) 9个BAC克隆 [24]
Xa12 + 4 [25]
xa19 - 7 RM8262-RM6728 (0.8 cM) [26]
xa20 - 3 KIC3-33.88 (33.0 Mb), KIC3-34.06 (33.2 Mb) 34个基因 [27]
Xa22(t) + 11 R1506-M3H8 (100 kb) [28]
xa24(t) - 2 RM14222-RM14226 (0.07 cM) 16个基因 [29]
Xa25(t) + 12 NBS109 (2.5 cM), G1314 (7.3 cM) [30]
Xa29(t) + 1 C904-R596 (1.3 cM) [31]
Xa30(t) + 11 RM1341 (11.4 cM) [32]
Xa32(t) + 11 ZCK24 (0.5 cM), RM6293 (1.5 cM) [33]
xa32(t) - 12 RM20A (1.7 cM) [34]
Xa33 + 7 RMWR7.1 (0.9 cM), RMWR7.6 (1.2 cM) 8个基因 [35]
xa33(t) - 6 RM20593 [36]
xa34(t) - 1 RM10929-BGID25 (204 kb) 21个开放阅读框 [37]
Xa35(t) + 11 RM7654 (1.1 cM), RM6293 ( 0.7 cM) [38]
Xa36(t) + 11 RM224-RM2136 (4.5 cM) [39]
Xa38
+
4
Oso4g53050-1
LOC_Os04g53030, LOC_Os04g53050,
LOC_Os04g53060
[40]
Xa39 + 11 RM26985-DM13 (0.51 cM) LOC_Os11g37759 [41]
Xa40 + 11 RM27320-ID55.WA18-5 (80 kb) LOC_Os11g46900 [42]
xa42

-

3

KGC3_16.342-KGC3_16.399 (57 kb)

LOC_Os03g28389, LOC_Os03g28400,
LOC_Os03g28420, LOC_Os03g28410,
LOC_Os03g28910
[43]

Xa43(t) + 11 IBb27os11_14-S_BB11.ssr_9 (119 kb) LOC_Os11g46060, LOC_Os11g46100 [19]
xa44(t) - 11 #46. Os11g0689400-#5. RM27318 (120 kb) Os11g0690066, Os11g0690466 [20]
xa-45(t) - 8 IRGSP-1.0 (80 kb) 9个基因 [21]
Xa46(t) + 11 RM26981-RM26984 (65.34 kb) LOC_Os11g37540, LOC_Os11g37550 [22]
[1] Rajarajeswari N V L, Muralidharan K. Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice. Crop Protection, 2006, 25(3):244-252.
[2] 徐羡明, 曾列先, 伍尚忠. 广东野生稻种质资源对白叶枯病的抗性鉴定. 广东农业科学, 1986(5):29-31.
[3] Ogawa T. Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xanthomonas campestris pv. oryzae) in rice. Jarq-Japan Agricultural Research Quarterly, 1993, 27(2):71-80.
[4] Xing J, Zhang D, Yin F, et al. Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon). Plant Disease, 2021, 105(12):4106-4112.
[5] Ji C H, Ji Z Y, Liu B, et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications, 2020, 1(4):10087.
[6] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668.
[7] Cao Y L, Duan L, Li H J, et al. Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonasoryzae pv. oryzae. Theoretical and Applied Genetics, 2007, 115(7):887-895.
[8] Hu K M, Cao J B, Zhang J, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants, 2017, 3:17009.
doi: 10.1038/nplants.2017.9 pmid: 28211849
[9] Iyer A S, Mccouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant- Microbe Interactions, 2004, 17(12):1348-1354.
[10] Chen X F, Liu P C, Mei L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2021, 2(3):100143.
[11] Tian D S, Wang J X, Zeng X, et al. The rice TAL effector- dependent resistance protein Xa10triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26(1):497-515.
[12] Chu Z H, Yuan M, Yao J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development, 2006, 20(10):1250-1255.
[13] Andaya C B, Ronald P C. A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv.oryzae. Physiological and Molecular Plant Pathology, 2003, 62(4):203-208.
[14] Wang C L, Zhang X P, Fan Y L, et al. Xa23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant, 2015, 8(2):290-302.
[15] Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell and Environment, 2011, 34(11):1958-1969.
[16] Gu K Y, Yang B, Tian D S, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435(7045):1122-1125.
[17] Hutin M, Sabot F, Ghesquière A, et al. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 2015, 84(4):694-703.
[18] 卢源达, 张敦宇, 钟巧芳, 等. 水稻抗白叶枯病基因Xa47(t)a的克隆及生物信息学分析. 分子植物育种. (2023-02-10) [2023- 03-08]. https://kns.cnki.net/kcms/detail//46.1068.S.20230209.1838.016.html.
[19] Kim S M, Reinke R F, Sundaram R M. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE, 2019, 14(2):e0211775
[20] Kim S M. Identification of novel recessive gene Xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theoretical and Applied Genetics, 2018, 131(12):2733-2743.
[21] Neelam K, Mahajan R, Gupta V, et al. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theoretical and Applied Genetics, 2020, 133:689-705.
[22] Chen S, Wang C, Yang J, et al. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Scientific Reports, 2020, 10(1):12642.
[23] Vikal Y, Chawla H, Sharma R, et al. Mapping of bacterial blight resistance gene xa8 in rice (Oryza sativa L.). Indian Journal of Genetics & Plant Breeding, 2014, 74(4):589-595.
[24] Goto T, Matsumoto T, Furuya N, et al. Mapping of bacterial blight resistance gene Xa11 on rice chromosome 3. Jarq-Japan Agricultural Research Quarterly, 2009, 43(3):221-225.
[25] 鲍思元, 谭明谱, 林兴华. 水稻抗白叶枯病基因Xa12区间连锁图的构建. 亚热带植物科学, 2006, 35(3):1-4.
[26] Taura S, Ichitani K. Chromosomal location of xa19, a broad- spectrum rice bacterial blight-resistant gene from XM5, a mutant line from IR24. Plants, 2023, 12(3):602.
[27] Msami J A, Kawaguchi Y, Ichitani K, et al. Linkage analysis of rice bacterial blight resistance gene xa20 in XM6, a mutant line from IR24. Breeding Science, 2021, 71(2):144-154.
[28] Wang C, Tan M P, Xu X, et al. Localizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome. Phytopathology, 2003, 93(10):1258-1262.
[29] Wu X M, Li X H, Xu C G, et al. Fine genetic mapping of xa24, a recessive gene for resistance against Xanthomonas oryzae pv. oryzae in rice. Theoretical and Applied Genetics, 2008, 118(1):185-191.
[30] Chen H L, Wang S P, Zhang Q F. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line. Phytopathology, 2002, 92(7):750-754.
doi: 10.1094/PHYTO.2002.92.7.750 pmid: 18943271
[31] 谭光轩, 任翔, 翁清妹, 等. 药用野生稻转育后代一个抗白叶枯病新基因的定位. 遗传学报, 2004, 31(7):724-729.
[32] 金旭炜, 王春连, 杨清, 等. 水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位. 中国农业科学, 2007, 40(6):1094-1100.
[33] 郑崇珂, 王春连, 于元杰, 等. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位. 作物学报, 2009, 35(7):1173-1180.
doi: 10.3724/SP.J.1006.2009.01173
[34] Ruan H H, Yan C Q, An D R, et al. Identifying and mapping new gene xa32(t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) from Oryza meyeriana L.. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(6):170-174.
[35] Kumar P N, Sujatha K, Laha G S, et al. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology, 2012, 102(2):222-228.
[36] Korinsak S, Sriprakhon S C, Sirithanya P, et al. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo International Journal of Science and Technology, 2009, 3(2):235-247.
[37] Chen S, Liu X Q, Zeng L X, et al. Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv.oryzae. Theoretical and Applied Genetics, 2011, 122(7):1331-1338.
[38] 郭嗣斌, 张端品, 林兴华. 小粒野生稻抗白叶枯病新基因的鉴定与初步定位. 中国农业科学, 2010, 43(13):2611-2618.
doi: 10.3864/j.issn.0578-1752.2010.13.001
[39] 苗丽丽, 王春连, 郑崇珂, 等. 水稻抗白叶枯病新基因的初步定位. 中国农业科学, 2010, 43(15):3051-3058.
[40] Bhasin H, Bhatia D, Raghuvanshi S, et al. New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Molecular Breeding, 2012, 30(1):607-611.
[41] Zhang F, Zhuo D L, Zhang F, et al. Xa39,a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathology, 2015, 64(3):568-575.
[42] Kim S M, Suh J P, Qin Y, et al. Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theoretical & Applied Genetics, 2015, 128(10):1-11.
[43] Busungu C, Taura S, Sakagami J I, et al. High-resolution mapping and characterization of xa42, a resistance gene against multiple Xanthomonas oryzae pv. oryzae races in rice (Oryza sativa L.). Breeding Science, 2018, 68(2):188-199.
[44] 张剑霞, 杨子贤, 姜恭好, 等. 利用DH群体定位白叶枯病抗性QTL. 分子植物育种, 2009, 7(3):471-477.
[45] 薛皦, 卢东柏, 刘维, 等. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位. 作物学报, 2022, 48(9):2210-2220.
doi: 10.3724/SP.J.1006.2022.12037
[46] Lu L J, Li L Q, Wang C C, et al. Identification of quantitative trait loci associated with resistance to Xanthomonas oryzae pv. oryzae pathotypes prevalent in South China. The Crop Journal, 2022, 10(2):498-507.
[47] Shu X Y, Wang A J, Jiang B, et al. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC Plant Biology, 2021, 21(1):255-267.
[48] Yang W, Zhou J L, Zhang S H, et al. Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice. Rice, 2021, 14(1):58.
doi: 10.1186/s12284-021-00501-z pmid: 34185169
[49] Huang B, Xu J Y, Hou M S, et al. Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection. Euphytica, 2012, 187(3):449-459.
[50] Kumar V A, Balachiranjeevi C H, Naik S B, et al. Marker- assisted introgression of the major bacterial blight resistance gene, Xa21 and blast resistance gene, pi54 into RPHR-1005, the restorer line of the popular rice hybrid, DRRH3. Journal of Plant Biochemistry and Biotechnology, 2016, 25(4):400-409.
[51] Xu Z Y, Xu X M, Gong Q, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular Plant, 2019, 12(11):1434-1446.
doi: S1674-2052(19)30289-8 pmid: 31493565
[52] Zhou Y B, Xu S C, Jiang N, et al. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnology Journal, 2021, 20(5):876-885.
doi: 10.1111/pbi.13766 pmid: 34890109
[53] 陈深, 汪聪颖, 苏菁, 等. 华南水稻白叶枯病菌致病性分化检测与分析. 植物保护学报, 2017, 44(2):217-222.
[54] Gu K Y, Tian D S, Qiu C X, et al. Transcription activator-like type III effector AvrXa 27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv.oryzae. Molecular Plant Pathology, 2009, 10(6):829-835.
[55] Yuan M, Ke Y G, Huang R Y, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife, 2016, 5:e19605
[56] 李舟, 杨雅云, 戴陆园, 等. 水稻白叶枯病抗性基因和相关因子研究利用进展. 中国农学通报, 2022, 38(30):91-99.
doi: 10.11924/j.issn.1000-6850.casb2021-0941
[1] 全成哲, 李淑芳, 李鹤南, 于维, 金京花. 吉林省73份审定水稻品种的表型性状遗传多样性研究[J]. 作物杂志, 2024, (3): 64–75
[2] 刘繁超, 方淑梅, 王庆燕, 王晗昕, 牛娟娟, 梁喜龙. 不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响[J]. 作物杂志, 2024, (2): 71–79
[3] 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战[J]. 作物杂志, 2024, (1): 1–7
[4] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[5] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[6] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[7] 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 90–96
[8] 高作利, 姜帅臣, 刘雨佳, 徐智慧, 刘海峰. 适合延边地区种植的彩色水稻品种筛选[J]. 作物杂志, 2023, (6): 62–68
[9] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[10] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[11] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[12] 张蛟, 陈澎军, 陈艳, 韩继军, 崔士友. 滩涂水产养殖池复垦种稻短期内土壤特性变化及水稻产量表现[J]. 作物杂志, 2023, (4): 118–125
[13] 陈玥, 宫亮, 金丹丹, 张鑫, 李波, 邹晓锦, 隋世江, 叶鑫, 刘艳. 北方粳稻最优产量氮肥阈值周年变化及其影响因素分析[J]. 作物杂志, 2023, (4): 144–151
[14] 花芹, 林泉祥, 宋远辉, 孙家猛, 张祖普, 陈庆全, 李金才, 张海涛. 水稻粉质胚乳突变体cse的表型分析及基因定位[J]. 作物杂志, 2023, (4): 22–30
[15] 杨洪伟, 张丽颖, 李晓辉. 盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究[J]. 作物杂志, 2023, (4): 253–259
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!