作物杂志,2019, 第1期: 9–14 doi: 10.16035/j.issn.1001-7283.2019.01.002

所属专题: 杂粮作物

• 专题综述 • 上一篇    下一篇

高淀粉加工专用型马铃薯育种研究进展

张红,郑世英,梁淑霞,陈广凤,王明友   

  1. 德州学院生态与园林建筑学院,253023,山东德州
  • 收稿日期:2018-07-29 修回日期:2018-12-11 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 王明友
  • 基金资助:
    2014德州学院校级科技人才引进计划项目(311885)

Research Progress in Breeding Special Potatoes with High Starch Content

Hong Zhang,Shiying Zheng,Shuxia Liang,Guangfeng Chen,Mingyou Wang   

  1. College of Ecology and Garden Architecture, Dezhou University, Dezhou 253023, Shandong, China
  • Received:2018-07-29 Revised:2018-12-11 Online:2019-02-15 Published:2019-02-01
  • Contact: Mingyou Wang

摘要:

马铃薯淀粉具有其他淀粉不能替代的独特品质和功能,广泛应用于食品加工、化工、医药、纺织、造纸、饲料等领域。国内马铃薯淀粉的年产量远远不能满足市场的需求,高淀粉加工专用型新品种选育是目前我国马铃薯育种的重要目标之一。概述了马铃薯淀粉的特性、需求,国内外高淀粉专用马铃薯的育种现状,马铃薯淀粉产量构成及遗传特性,马铃薯淀粉合成主要相关酶及其基因表达,各种育种途径、方法在高淀粉加工专用马铃薯选育中的应用及研究进展等方面的内容,为马铃薯高淀粉加工专用新品种的选育提供参考。

关键词: 高淀粉, 马铃薯, 育种, 研究进展

Abstract:

Potato starch has a unique quality and function that cannot be replaced by other starch, and it is widely used in food processing, chemical industry, medicine, textile, paper making, feed and other fields. Domestic potato starch production so far could not satisfy the demand of market. Breeding of processing special varieties with high starch content is one of the most important potato breeding targets in our country. This paper summarizes the characteristics of potato starch, demand and breeding status of high starch potatoes at home and abroad,the composition and genetic characteristics of potato starch yield as well as the main enzymes involved in starch synthesis in potato and their gene expression. Application and research progress of all kinds of breeding approach in the breeding of processing special potato with high starch content were scrutinized, hoping to provide guidance for the breeding of special potato varieties.

Key words: High starch content, Potato, Breeding, Research progress

[1] 井大炜, 王明友 . 德州市马铃薯高产创建与绿色增产模式的问题及对策研究. 安徽农学通报, 2017(23):29-30.
doi: 10.16377/j.cnki.issn1007-7731.20171204.001
[2] 石瑛, 张丽莉, 魏峭嵘 , 等. 淀粉加工型马铃薯新品种东农308的选育. 中国蔬菜, 2017(2):54-56.
doi: 10.3969/j.issn.1000-6346.2014.02.017
[3] 李高峰, 王一航, 文国宏 , 等. 超高淀粉马铃薯新品种陇薯8号的选育. 中国蔬菜, 2017(20):82-84.
doi: 10.3969/j.issn.1000-6400.2013.04.125
[4] Flis B, Domański L, Zimnoch-Guzowska E , et al. Stability analysis of agronomic traits in potato cultivars of different origin. American Journal of Potato Research, 2014,91(4):404-413.
doi: 10.1007/s12230-013-9364-6
[5] Schöhals1 E M, Ortega F L, Barandalla L , et al. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2016,129(4):767-785.
doi: 10.1007/s00122-016-2665-7
[6] 蔡兴奎, 谢从华 . 中国马铃薯发展历史、育种现状及发展建议. 长江蔬菜, 2017(12):30-33.
doi: 10.3865/j.issn.1001-3547.2016.12.013
[7] 隋启君 . 中国马铃薯育种对策浅见. 中国马铃薯, 2001,15(5):259-264.
doi: 10.3969/j.issn.1672-3635.2001.05.001
[8] 冯琰, 尹江, 田国联 , 等. 高淀粉马铃薯新品种—‘冀张薯15号’. 中国马铃薯, 2015,29(5):319-320.
doi: 10.3969/j.issn.1672-3635.2013.03.017
[9] 任珂, 胡兴国, 高德臣 . 马铃薯高淀粉品种蒙薯19的配套栽培技术. 黑龙江农业科学, 2017(1):154-155.
doi: 10.11942/j.issn1002-2767.2017.01.0154
[10] 吕汰, 王鹏, 郭天顺 , 等. 高淀粉马铃薯新品种‘天薯13号’的选育. 中国马铃薯, 2016,30(2):126-127.
doi: 10.3969/j.issn.1672-3635.2016.02.014
[11] 展康, 代艳琼, 徐发海 , 等. 高淀粉马铃薯新品种‘宣薯5号’的选育. 中国马铃薯, 2016,30(5):319-320.
[12] 李华鹏, 梁晓, 沈学善 , 等. 高淀粉早熟马铃薯新品种川芋16的选育及栽培技术. 耕作与栽培, 2017(3):81-82.
[13] 王洪伟, 李春波 . 高淀粉马铃薯克新27号的特征特性及高产栽培技术. 现代农业科技, 2017(22):71.
[14] 主要农作物品种审定标准. 种子科技, 2017(2):100-108.
doi: 10.3969/j.issn.1005-2690.2017.02.075
[15] 马光恕, 廉华, 王彦宏 , 等. 硼素对马铃薯淀粉合成和积累的影响. 核农学报, 2013,27(3):384-390.
[16] Shin E H, Baik M Y, Kim H S . Comparison of physicochemical properties of starches and parenchyma cells isolated from potatoes cultivated in Korea. Food Science and Biotechnology, 2015,24(3):955-963.
doi: 10.1007/s10068-015-0123-y
[17] Li L, Tacke E, Hofferbert H-R , et al. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theoretical and Applied Genetics, 2013,126(4):1039-1052.
doi: 10.1007/s00122-012-2035-z pmid: 23299900
[18] 齐海英, 杜珍, 杨春 . 结合不同环境条件筛选马铃薯高淀粉材料. 中国马铃薯, 2011,6(25):20.
doi: 10.3969/j.issn.1672-3635.2011.06.001
[19] 梁晶 . 八个马铃薯品种淀粉的生态差异及稳定性分析. 哈尔滨:东北农业大学, 2007.
doi: 10.7666/d.y1165292
[20] Urbany C, Stich B, Schmidt L , et al. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics, 2011,12(1):7.
doi: 10.1186/1471-2164-12-7
[21] Van Eck H J . Genetics of morphological and tuber traits//Vreugdenhil D, Bradshaw J, Gebhardt C, et al. Potato Biology and Biotechnology Advances and Perspectives. Elsevier Science B.V, Amsterdam, 2007: 91-115.
[22] 张翔宇, 李霄峰 . 高淀粉马铃薯品种块茎大小与淀粉含量之间的关系. 中国马铃薯, 2006,20(5):284-287.
doi: 10.3969/j.issn.1672-3635.2003.05.006
[23] 马彦军, 王蒂 . 马铃薯腺苷二磷酸葡萄糖焦磷酸化酶的调控. 中国马铃薯, 2002,16(6):353-355.
doi: 10.3969/j.issn.1672-3635.2002.06.012
[24] Nakata P A, Okita T W . Differential regulation of ADP-glucose pyrophosphorylase in the sink and source tissue of potato. Plant Physiology, 1995,108(1):361-368.
doi: 10.1104/pp.108.1.361
[25] 李淑洁 . 用于直链淀粉合成的相关基因的克隆及对马铃薯遗传转化的研究. 兰州:甘肃农业大学, 2005.
doi: 10.7666/d.y724302
[26] Kossmann J, Abel G J W,Springer F ,et al. Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L) that is predominantly expressed in leaf tissue. Planta, 1999,208(4):503-511.
doi: 10.1007/s004250050587
[27] Marshall J . Identification of the major starch synthase in the soluble fraction of potato tubers. The Plant Cell, 1996,8(7):1121-1135.
doi: 10.2307/3870356
[28] Satoh H, Nishi A, Yamashita K , et al. Starch-branching enzyme indeficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology, 2003,133(3):1111-1121.
doi: 10.1104/pp.103.021527 pmid: 14526120
[29] 杜宏辉 . 可溶性淀粉合成酶SSⅢ基因对马铃薯的遗传转化. 兰州:甘肃农业大学, 2011.
doi: 10.3969/gab.030.000303
[30] 刘玉汇, 张俊莲, 王蒂 . 马铃薯等主要农作物淀粉合成酶的研究进展. 中国马铃薯, 2008,22(3):168-172.
doi: 10.3969/j.issn.1672-3635.2008.03.012
[31] Blauth S L, Yao Y, Klucinec J D , et al. Identification of Mutator insertionalmutants of starch-branching enzymes in corn. Plant Physiology, 2001,125(3):1396-1405.
doi: 10.1104/pp.125.3.1396
[32] Burton R A, Bewley J D, Smith A M , et al. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. The Plant Journal, 1995,7(1):3-15.
doi: 10.1046/j.1365-313X.1995.07010003.x pmid: 7894509
[33] Takeda Y, Guan H P, Preiss J . Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydrate Research, 1993,240(2):253-263.
doi: 10.1016/0008-6215(93)84188-C
[34] Larsson C T, Khoshnoodi J, Ek B , et al. Molecular cloning and characterization of starch-branching enzyme Ⅱ from potato. Plant Molecular Biology, 1998,37(3):505-511.
doi: 10.1023/A:1005908305456 pmid: 9617817
[35] Jobling S A, Schwall G P, Westcott R J , et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure:cloning and characterisation of multiple forms of SBE A. Plant Journal, 1999,18(2):163-171.
doi: 10.1046/j.1365-313X.1999.00441.x
[36] 孙秀梅 . 国外种质资源在我国马铃薯育种中的利用. 中国马铃薯, 2000,2(14):110-111.
doi: 10.3969/j.issn.1672-3635.2000.02.021
[37] 刘连义, 刘淑华, 姜波 , 等. 马铃薯高淀粉品种资源的引进与创新应用. 北京:中国作物学会, 2014: 256-259.
[38] 姜丽丽, 金光辉, 孙秀梅 , 等. 高淀粉马铃薯新品种垦薯2号的选育. 中国蔬菜, 2017(5):73-76.
[39] 纳添仓, 季克震 . 加工型马铃薯品种的性状要求及育种方法. 青海农林科技, 2017(3):18-19.
doi: 10.3969/j.issn.1004-9967.2001.03.010
[40] 何三信, 文国宏, 王一航 , 等. 马铃薯高淀粉育种实践与体会. 中国种业, 2017(S1):91-92.
[41] 刘淑华, 姜兴亚, 梁德林 . 马铃薯高淀粉育种初世代比重相关性分析和测选方法的研究. 马铃薯杂志, 1989,3(3):139-143.
[42] Behnke M . Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of plants. Theoretical and Applied Genetics, 1979,55(2):69-71.
doi: 10.1007/BF00285192 pmid: 24306486
[43] 卫增泉, 颉红梅, 梁剑平 , 等. 重离子束在诱变育种和分子改造中的应用. 原子核物理评论, 2003,20(1):38-41.
doi: 10.3969/j.issn.1007-4627.2003.01.007
[44] 谢忠奎, 王亚军, 颉红梅 , 等. 马铃薯重离子辐射育种研究. 原子核物理评论, 2008,25(2):187-190.
[45] 贾笑英 . 利用转基因技术培育马铃薯高淀粉及抗病新品系. 兰州:甘肃农业大学, 2006.
[46] Alisdair R F, Anna S, Eva T , et al. Potato plants exhibiting combined antisense repression of cytosolic and plastidial isoforms of phosphoglucomutase surprisingly approximate wild type with respect to the rate of starch synthesis. Plant Physiology and Biochemistry, 2002,40(11):921-927.
doi: 10.1016/S0981-9428(02)01457-2
[47] Abel G J W, Springer F, Willmitzer L , et al. Cloning and factional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solonum tuherosum L.). The Plant Journal, 1996,10(6):981-991.
doi: 10.1046/j.1365-313X.1996.10060981.x
[48] 徐建飞, 金黎平 . 马铃薯遗传育种研究:现状与展望. 中国农业科学, 2017,50(6):990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
[49] 孙邦升 . 高淀粉马铃薯核心种质的构建与验证. 北京:中国农业科学院, 2012.
[50] 刘长臣 . 马铃薯高淀粉资源的鉴定及综合评价. 中国马铃薯, 2010,24(1):11-13.
doi: 10.3969/j.issn.1672-3635.2010.01.003
[1] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1–7
[2] 郝智勇,杨广东,邱广伟,胡尊艳,王立春,王海艳. 马铃薯高类胡萝卜素资源材料筛选[J]. 作物杂志, 2019, (2): 71–77
[3] 张政,牛胤全,张东,胡成梅,苑乂川,王绘艳,王曙光,曹亚萍,孙黛珍. 小麦抽穗期和开花期性状的全基因组关联分析[J]. 作物杂志, 2019, (1): 44–49
[4] 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育[J]. 作物杂志, 2018, (6): 10–16
[5] 宿飞飞,张静华,李勇,刘尚武,刘振宇,王绍鹏,万书明,陈曦,高云飞,胡林双,吕典秋. 不同灌溉方式对两个马铃薯品种生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[6] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95–101
[7] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8–12
[8] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154–160
[9] 叶怡然,达布希拉图,沙本才,王文祥,叶宏达,耿世娴,成京晋,海梅荣. 不同肥料对冬马铃薯光合特性的影响[J]. 作物杂志, 2018, (3): 135–140
[10] 田荟遥,蒋继志,李成斌,申芬,侯宁. 中国东北地区马铃薯致病疫霉遗传多样性分析[J]. 作物杂志, 2018, (3): 168–173
[11] 宋江春,李拴柱,王建玉,张秀阁,朱雪峰,乔建礼,向臻. 我国高油花生育种研究进展[J]. 作物杂志, 2018, (3): 25–31
[12] 王君婵,高致富,李东升,朱冬梅,吴宏亚. 农业信息技术在小麦育种中的应用研究[J]. 作物杂志, 2018, (3): 37–43
[13] 梁淑敏,王颖,潘哲超,张磊,徐宁生,李燕山,杨琼芬,李先平,白建明,姚春光,卢丽丽,隋启君. 不同栽培模式的土壤水热效应对马铃薯产量及结薯规律的影响[J]. 作物杂志, 2018, (3): 90–96
[14] 崔勇. 马铃薯连作造成的影响及连作障碍防控技术[J]. 作物杂志, 2018, (2): 87–92
[15] 石晓华,杨海鹰,康文钦,秦永林,樊明寿,贾立国. 不同施氮量对马铃薯-小麦轮作体系产量及土壤氮素平衡的影响[J]. 作物杂志, 2018, (2): 108–116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .