作物杂志,2021, 第4期: 19 doi: 10.16035/j.issn.1001-7283.2021.04.001
• 遗传育种·种质资源·生物技术 • 下一篇
翁文凤1,2(), 伍小方2, 张凯旋2, 唐宇3, 江燕1, 阮景军1(), 周美亮2()
Weng Wenfeng1,2(), Wu Xiaofang2, Zhang Kaixuan2, Tang Yu3, Jiang Yan1, Ruan Jingjun1(), Zhou Meiliang2()
摘要:
bZIP转录因子不仅在植物盐胁迫网络中起着重要的作用,还可调节植物类黄酮的积累。在苦荞品种川荞1号中克隆了1个具有转录激活活性的bZIP家族基因FtbZIP5。FtbZIP5基因能被NaCl和脱落酸(ABA)诱导表达,在茎和叶中的表达高于根中。对过表达FtbZIP5基因毛状根的总黄酮含量进行检测,结果显示,总黄酮含量在过表达株系中显著高于野生株系。同时检测其类黄酮合成途径中关键酶基因的表达量,其中黄烷酮-3-羟化酶基因(F3H)的表达量较高。可推测该过表达毛状根株系中总黄酮的积累与F3H的表达有关。在NaCl(100mmol/L)胁迫下,各株系的总黄酮积累受到抑制,过表达株系的含量减少至0.63mg/g。并且,在这种压力下,F3H的表达水平仍然高于对照。植株在受到胁迫后,对照株系的过氧化氢酶(CAT)活性显著低于过表达株系。随着野生型植株受到胁迫的增强丙二醛(MDA)含量增加,但过表达株系的含量趋于稳定。以上结果表明,在过表达FtbZIP5毛状根中,总黄酮的积累可能是通过关键酶基因F3H的上调表达来调节的。并且FtbZIP5可提高苦荞毛状根耐盐性。通过解析FtbZIP5对苦荞毛状根中总黄酮积累及植株耐盐性的影响,为荞麦耐盐性和解析其耐盐机制研究奠定基础。
[1] | 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订. 植物遗传资源学报, 2019,20(3):646-653. |
[2] | Liu Y X, Cai C Z, Yao Y L, et al. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. Journal of the Science of Food and Agriculture, 2019,99(12):5565-5576. |
[3] | Kanter M, Aktas C, Erboga M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food and Chemical Toxicology, 2012,50(3/4):719-725. |
[4] | Wahid A, Ghazanfar A. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 2006,163(7):723-730. |
[5] | Annamaria G, Marco M, Moira M, et al. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chemistry, 2008,114(1):204-211. |
[6] | Ariel F D, Manavella P A, Dezar C A, et al. The true story of the HD-Zip family. Trends in Plant Science, 2007,12(9):419-426. |
[7] | Liu M, Wen Y, Sun W, et al. Genome-wide identification,phylogeny,evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genomics, 2019,20(1):483. |
[8] | Guo X L, Hou X M, Fang J, et al. The rice GERMINATION DEFECTIVE 1,encoding a B3 domain transcriptional repressor,regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. The Plant Journal, 2013,75(3):403-416. |
[9] | Corrêa L G, Riaño-Pachón D M, Schrago C G, et al. The role of bZIP transcription factors in green plant evolution:adaptive features emerging from four founder genes. PLoS ONE, 2008,3(8):e2944. |
[10] | Li X Y, Gao S Q, Tang Y M, et al. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics, 2015,16:976. |
[11] | Liu J X, Srivastava R, Che P, et al. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. The Plant Journal, 2007,51(5):897-909. |
[12] | Zhang S X, Haider I, Kohlen W, et al. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, 2012,80(6):571-585. |
[13] | Lakra N, Nutan K K, Das P, et al. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. Journal of Plant Physiology, 2015,176:36-46. |
[14] | Hartmann U, Sagasser M, Mehrtens F, et al. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 2005,57(2):155-171. |
[15] | Li Q, Zhao H X, Wang X L, et al. Tartary buckwheat transcription factor FtbZIP5,regulated by FtSnRK2.6,can improve salt/drought resistance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2020,21(3):1123. |
[16] | Malacarne G, Coller E, Czemmel S, et al. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany, 2016,67(11):3509-3522. |
[17] | 卢晓玲, 何铭, 张凯旋, 等. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究. 作物杂志, 2020(5):33-40. |
[18] | 谈天斌, 卢晓玲, 张凯旋, 等. TrMYB308基因的克隆及在苦荞毛状根中的功能分析. 植物遗传资源学报, 2019,20(6):1542-1553. |
[19] | 李为喜, 朱志华, 李国营, 等. AlCl3分光光度法测定荞麦种质资源中黄酮的研究. 植物遗传资源学报, 2008,9(4):502-505. |
[20] | Park N I, Li X H, Uddin R M, et al. Phenolic compound production by different morphological phenotypes in hairy root cultures of Fagopyrum tataricum Gaertn. Archives of Biological Sciences, 2011,63(1):193-198. |
[21] | 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系. 中草药, 2005(9):139-142. |
[22] | 许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展. 中国野生植物资源, 2020,39(10):41-49. |
[23] | Zhan X, Shen Q, Chen J, et al. Rice sulfoquinovosyl transferase SQD2.1 mediates flavonoid glycosylation and enhances tolerance to osmotic stress. Plant Cell Environment, 2019,42(7):2215-2230. |
[24] | Dong N Q, Sun Y, Guo T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020,11(1):2629. |
[25] | Pedranzani H, Sierra-de-Grado R, Vigliocco A, et al. Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regulation, 2007,52:111-116. |
[26] | Li X H, Kim Y B, Kim Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. Journal of Plant Physiology, 2013,170(18):1630-1636. |
[27] | Abdallah S B, Aung B, Amyot L, et al. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiologiae Plantarum, 2016,38(3):72. |
[28] | 王琰, 陈建文, 狄晓艳. 水分胁迫下不同油松种源SOD、POD、MDA及可溶性蛋白比较研究. 生态环境学报, 2011,20(10):1449-1453. |
[29] | 刘会超, 贾文庆. 盐胁迫对白三叶茎的POD、CAT的影响研究. 吉林农业科学, 2009,34(1):43-46. |
[1] | 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价[J]. 作物杂志, 2021, (3): 1927 |
[2] | 魏艳秋, 景艺卓, 郭笑恒, 张力, 韩丹, 邵惠芳. 外源硒对植物抗盐性的影响研究进展[J]. 作物杂志, 2021, (2): 1521 |
[3] | 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 5256 |
[4] | 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发[J]. 作物杂志, 2021, (1): 3846 |
[5] | 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 3340 |
[6] | 杨学乐, 张璐, 李志清, 何录秋. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020, (5): 5358 |
[7] | 张自强, 白晨, 张惠忠, 李晓东, 王良, 付增娟, 赵尚敏, 鄂圆圆, 张辉, 张必周. 甜菜耐盐性形态学、生理生化特性及分子水平研究进展[J]. 作物杂志, 2020, (3): 2733 |
[8] | 李春花, 黄金亮, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王春龙, 郭来春, 洪波, 任长忠, 王莉花. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020, (3): 4246 |
[9] | 马成瑞,向达兵,万燕,欧阳建勇,宋月,唐正松,刘建英,赵钢. 不同苦荞品种花和籽粒空间分布特征及差异分析[J]. 作物杂志, 2020, (1): 3540 |
[10] | 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 6775 |
[11] | 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 4349 |
[12] | 杨甜,张永清,董馥慧,马星星,薛小娇. 不同水分条件下不同抗旱性苦荞根系生长规律研究[J]. 作物杂志, 2019, (6): 7682 |
[13] | 戈珍梅,刘治国,赵露,张晓宇,刘桂霞. 盐胁迫对膜荚黄芪种子萌发的影响[J]. 作物杂志, 2019, (6): 187194 |
[14] | 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176182 |
[15] | 宋丽芳,冯美臣,张美俊,肖璐洁,王超,杨武德,宋晓彦. 外源硒对苦荞生长发育及子粒硒含量的影响[J]. 作物杂志, 2019, (3): 150154 |
|