作物杂志,2021, 第2期: 1521 doi: 10.16035/j.issn.1001-7283.2021.02.002
魏艳秋1(), 景艺卓1, 郭笑恒1, 张力2, 韩丹1(), 邵惠芳1()
Wei Yanqiu1(), Jing Yizhuo1, Guo Xiaoheng1, Zhang Li2, Han Dan1(), Shao Huifang1()
摘要:
硒作为营养元素,能够参与调控植物抗盐的生理生化代谢过程。本文就硒对植物生长发育的影响、吸收转运及提高植物抗盐性的作用机制3个方面作了总结,并对下一步的研究和应用进行了展望,以期为硒调控植物抗盐的生理生化代谢过程提供理论依据。
[1] | 陆国伟, 陈晓斌. 环境保护与盐碱化荒地治理研究. 环境科学与管理, 2018,43(8):13-16. |
[2] | 李娟. 生命微量元素硒环境营养背景研究. 贵阳:贵州师范大学, 2000. |
[3] | Lan C Y, Lin K H, Huang W D, et al. Protective effects of selenium on wheat seedlings under salt stress. Agronomy, 2019,9(6):274-286. |
[4] | 高菲, 戴志华, 韩丹, 等. 硒影响植物抗氧化系统的作用与机制. 生物技术进展, 2017,7(5):467-472. |
[5] | 王华, 张雅娟, 周武先, 等. 外源硒对白术种子萌发及幼苗生理特性的影响. 分子植物育种, 2019,17(22):7551-7558. |
[6] | 曹升, 王颖, 陈会鲜, 等. 外源硒对食用木薯品质的影响研究. 作物杂志, 2020(1):168-172. |
[7] | 刘婷, 候运和, 郑甲成. 外源硒对碎米荠农艺性状及硒含量的影响. 湖北民族学院学报(自然科学版), 2018,36(4):365-369. |
[8] | 位晶, 牛乐, 唐宏亮. 不同硒形态对玉米根系形态和养分吸收的影响. 安徽农业科学, 2019,47(4):161-165. |
[9] | Fan J, Wan H, Wang R, et al. Growth and physiological characteristics of flue-cured tobacco (Nicotiana Tabacum L.) under selenate-Se stress. Communications in Soil Science and Plant Analysis, 2018,49(18):2238-2246. |
[10] | 韩丹, 熊双莲, 许自成, 等. 硒对烤烟生长、化学指标及矿质营养元素含量的影响. 核农学报, 2017,31(10):2072-2079. |
[11] | 金小琬, 朱茜, 黄进, 等. 硒对叶绿体及光合作用的影响. 分子植物育种, 2019,17(1):288-294. |
[12] | Jiang C Q, Zu C L, Lu D J, et al. Effect of exogenous selenium supply on photosynthesis,Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 2017,7:42039. |
[13] | 台培东, 李培军. 硒对植物的毒害作用. 农业环境科学学报, 2002(6):496-498. |
[14] | Anjum S A, Ashraf U, Zohaib A, et al. Growth and developmental responses of crop plants under drought stress:a review. Zemdirbyste, 2017,104(3):267-276. |
[15] | Pessione E, Pessione A, Mangiapane E. Selenium and selenoproteins:an overview on different biological systems. Current Protein and Peptide Science, 2014,15(6):598-607. |
[16] | 王锐, 余涛, 曾庆良, 等. 我国主要农耕区土壤硒含量分布特征、来源及影响因素. 生物技术进展, 2017(5):359-366. |
[17] | 邢颖, 刘永贤, 梁潘霞, 等. 土壤硒形态及其相互转化因子的研究. 中国农学通报, 2018,34(17):83-88. |
[18] | Schiavon M, Lima L W, Jiang Y, et al. Effects of selenium on plant metabolism and implications for crops and consumers. Selenium in Plants, 2017,11:257-275. |
[19] | Harris J, Schneberg K A, Pilon-Smits E A H. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata,from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta, 2014,239(2):479-491. |
[20] | 张雯, 秦璐, 杨林红, 等. 不同硫浓度下硒镉交互作用对油菜幼苗生长特性的影响. 新疆环境保护, 2018,40(4):11-16. |
[21] | 王卫真, 唐家俊, 彭安. 富硒大蒜含硒蛋白的分离、鉴定和生物活性研究. 生物化学杂志, 1989(3):229-234. |
[22] | Kassis E, Cathala N, Rouached H, et al. Characterization of a selenate-resistant arabidopsis mutant. root growth as a potential target for selenate toxicity. Plant Physiology, 2007,143(3):1231-1241. |
[23] | Michela, Schiavon, Marinus, et al. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 2015,6:2. |
[24] | 韩丹. 硒在烤烟中的累积、形态转化及缓解砷毒害的机理研究. 武汉:华中农业大学, 2015. |
[25] | Barbara, Hawrylak-Nowak. Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica, 2015,57(2):49-54. |
[26] | Jiang Y, Feng X, Yang Y, et al. Performance of common buckwheat (Fagopyrum esculentum M.) supplied with selenite or selenate for selenium biofortification in northeastern China. The Crop Journal, 2018,6(4):386-393. |
[27] | Zhang L, Hu B, Li W, et al. OsPT2,a phosphate transporter,is involved in the active uptake of selenite in rice. The New phytologist, 2014,201(4):1183-1191. |
[28] | 姜英. 荞麦硒生物强化及植物硒代谢关键酶ATPS2特性研究. 北京:中国农业大学, 2018. |
[29] | Tian S, Lu L, Xie R, et al. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence. Frontiers in Plant Science, 2015,5:808. |
[30] | 陈玉真, 单睿阳, 王峰, 等. 天然硒在茶园土壤-茶树-茶汤中吸收转运特征. 茶叶学报, 2019,60(3):106-113. |
[31] | Wang M K, Dinh Q T, Qi M M, et al. Radicular and foliar uptake,and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.):a comparison of five Se exogenous species. Plant and Soil, 2020,446(1):111-123. |
[32] | Malheiros R S P, Gonçalves F C M, Brito F A L, et al. Selenomethionine induces oxidative stress and modifies growth in rice (Oryza sativa L.) seedlings through effects on hormone biosynthesis and primary metabolism. Ecotoxicology and Environmental Safety, 2020,189(2):1-10. |
[33] | Leduc D L, Abdelsamie M, Montes-Bayon M, et al. Overex-pressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 2006,144(1):70-76. |
[34] | Wu Z C, Xu S J, Shi H Z, et al. Comparison of foliar silicon and selenium on cadmium absorption,compartmentation,translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicology and Environmental Safety, 2018,166:157-164. |
[35] | 王昊伟, 杨玲, 鲁强, 等. 盐胁迫对大花四照花种子萌发与幼苗生长的影响. 南京林业大学学报(自然科学版), 2020,44(3):89-94. |
[36] | Abbasi H, Jamil M, Haq A, et al. Salt stress manifestation on plants,mechanism of salt tolerance and potassium role in alleviating it:a review. Zemdirbyste-Agriculture, 2016,103(2):229-238. |
[37] | Elkelish A A, Soliman M H, Alhaithloul H A, et al. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiology and Biochemistry, 2019,137:144-153. |
[38] | Zaman B, Niazi B H, Ahmad M A. Response of wheat plants to sodium and calcium ion interaction under saline environment. International Journal of Environment Science and Technology, 2005,2(1):7-12. |
[39] | Alla M M N, Badran E G, Mohammed F A, et al. Overexpression of Na+- manipulating genes in wheat by selenium is associated with antioxidant enforcement for enhancement of salinity tolerance. Rendiconti Lincei. Scienze Fisiche e Naturali, 2020,31(1):177-187. |
[40] | 韩广泉, 李俊, 宋曼曼, 等. 硒对盐胁迫下加工番茄种子萌发及抗氧化酶系统的影响. 石河子大学学报(自然科学版), 2010,28(4):422-426. |
[41] | Subramanyam K, Du Laing G, Van Damme E J M. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Frontiers in Plant Science, 2019,10:116. |
[42] | 孙协平, 罗友进, 周广文. 硒对甜樱桃叶片褪黑素和谷胱甘肽氧化还原循环的影响. 中国农业科学, 2017,50(22):4373-4381. |
[43] | 杨晓慧, 蒋卫杰, 魏珉 等. 盐胁迫下硒对生菜生长发育的影响. 中国农学通报, 2006(3):271-274. |
[44] | Diao M, Ma L, Wang J, et al. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 2014,33(3):671-682. |
[45] | 马龙, 喻晓强, 樊新民. 外源硒对盐胁迫下加工番茄幼苗叶片抗氧化系统的调控效应. 北方园艺, 2013(3):4-8. |
[46] | 曹丽华, 朱娟娟. 外源硒调控盐胁迫下小白菜种子萌发特性和生理特性研究. 北方园艺, 2019(2):1-7. |
[47] | 荆培培, 任红茹, 杨洪建, 等. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响. 作物杂志, 2020(1):67-75. |
[48] | Habibi G. Učinek sušnega stresa in škropljenja s selenom na fotosintezo in antioksidativno aktivnost jarega ječmena. Acta Agriculturae Slovenica, 2013,101(1):31-39. |
[49] | Liu X, An B, Gu N, et al. Response of leaf photosynthetic characteristics of Syringa oblata and Syringa reticulata var. mandshurica to chilling stress. Journal of Forestry Research, 2019,31(1):1-10. |
[50] | Bot P J, Abbasi G H, Akhtar J, et al. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 2014,46(1):135-146. |
[51] | Kaur S, Nayyar H. Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake,improves reproductive function,pod set and seed yield. Scientia Horticulturae, 2015,197:304-317. |
[52] | Ashraf M A, Akbar A, Parveen A, et al. Phenological application of selenium differentially improves growth,oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry, 2018,123:268-280. |
[53] | 金伊楠, 许自成, 张环纬, 等. 烟草盐胁迫与耐盐相关基因的研究进展. 中国烟草学报, 2018,24(6):112-118. |
[54] | Feki K, Tounsi S, Masmoudi K, et al. The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma, 2017,254:1725-1734. |
[55] | 李茹玉, 柴薇薇, 郭晓农, 等. 盐处理对罗布麻(Apocynum venetum)幼苗渗透调节的影响. 分子植物育种, 2020,18(2):4105-4110. |
[56] | 赖弟利, 范昱, 朱红林, 等. 燕麦耐盐性的生理生化指标网络分析. 作物杂志, 2020(2):147-155. |
[57] | 马书荣, 李韫, 石美玉, 等. 盐碱胁迫对蒙古柳无性系生理特性的影响. 分子植物育种, 2021,19(3):1004-1013. |
[58] | Ardebili N O, Saadatmand S, Niknam V, et al. The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 2014,36(12):3199-3205. |
[59] | 付爱飞, 权桂芝, 刘慧英, 等. 硒对盐胁迫下番茄幼苗叶片渗透调节物质及生理指标的影响. 石河子大学学报(自然科学版), 2008,26(5):587-590. |
[60] | Ram P, Atanu B, Nguyen Q D. Nanotechnology in sustainable agriculture:recent developments,challenges,and perspectives. Frontiers in Microbiology, 2017,8:1014-1021. |
[61] | Domokos-Szabolcsy E, Marton L, Sztrik A, et al. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regulation, 2012,68(3):525-531. |
[62] | Zsiros O, Nagy V, Párducz R, et al. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynthesis Research, 2019,139(1):449-460. |
[63] | Djanaguiraman M, Belliraj N, Bossmann S H, et al. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018,3(3):2479-2491. |
[64] | Safari M, Ardebili Z O, Iranbakhsh A. Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A),and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 2018,40(6):1-8. |
[65] | Reza S, Alireza I, Ghader H, et al. Selenium nanoparticle protected strawberry against salt stress through modification in salicylic acid,ion homeostasis,antioxidant machinery,and photosynthesis performance. Acta Biologica Cracoviensia Series Botanica, 2020,62(1):33-42. |
[66] | Zahedi S M, Abdelrahman M, Hosseini M S, et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 2019,253:246-258. |
[67] | Morales-Espinoza M C, Cadenas-Pliego G, Perez-Alvarez M, et al. Se nanoparticles induce changes in the growth,antioxidant responses,and fruit quality of tomato developed under NaCl stress. Molecules, 2019,24(17):3030. |
[1] | 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 6572 |
[2] | 金玉, 郭新宇, 张颖, 李大壮, 王璟璐. 玉米叶片气孔表型鉴定及研究进展[J]. 作物杂志, 2023, (6): 110 |
[3] | 陈锦平, 潘丽萍, 邢颖, 廖青, 刘永贤, 车江旅. 外源茉莉酸对小白菜耐硒性及硒积累的作用研究[J]. 作物杂志, 2023, (6): 160166 |
[4] | 李越, 宁丹, 吕玉峰, 张斌, 薛志强, 贾举庆, 冯美臣, 宋晓彦, 张美俊, 杨武德. 叶面喷硒对燕麦品种硒积累的影响及品种综合性状评价[J]. 作物杂志, 2023, (4): 215223 |
[5] | 杨洪伟, 张丽颖, 李晓辉. 盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究[J]. 作物杂志, 2023, (4): 253259 |
[6] | 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188194 |
[7] | 栾金华, 宋欣阳, 汪磊, 孙丽丽, 程艳双, 董浩, 张佳, 程效义, 徐海. 辽宁省水稻新品系苗期耐盐性差异研究[J]. 作物杂志, 2023, (3): 2026 |
[8] | 司振兴, 梁郅哲, 钱建财, 许自成, 李俊领, 张豫丹, 张莉, 贾玮. 植物对硒的吸收、转运及代谢机制研究进展[J]. 作物杂志, 2023, (2): 19 |
[9] | 杨旭红. 农业植物品种DUS测试指南和标准管理信息化探讨[J]. 作物杂志, 2023, (2): 1015 |
[10] | 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, (2): 6776 |
[11] | 边淑惠, 邢国芳, 梁昕, 张舒玮, 王佳宁, 叶昊雨. 不同形态硒及用量对幼苗期谷子生长与生理的影响[J]. 作物杂志, 2023, (1): 152157 |
[12] | 马春梅, 田阳青, 赵强, 李江余, 吴雪琴. 植物生长调节剂复配对棉花产量的影响[J]. 作物杂志, 2022, (6): 181185 |
[13] | 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 4253 |
[14] | 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98104 |
[15] | 王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展[J]. 作物杂志, 2022, (5): 112 |
|