作物杂志,2022, 第4期: 138–145 doi: 10.16035/j.issn.1001-7283.2022.04.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

丙烯酰胺/羧甲基纤维素/生物炭复合水凝胶对烟苗镉胁迫的缓解效应研究

杜甫1,2(), 夏茂林1(), 刘新源3, 于兆锦1, 张展4(), 刘云飞1, 姬小明1()   

  1. 1河南农业大学烟草学院,450002,河南郑州
    2湖北中烟工业有限责任公司,430040,湖北武汉
    3河南省三门峡市烟草公司技术中心,472400,河南三门峡
    4河南中烟工业有限责任公司技术中心,450008,河南郑州
  • 收稿日期:2021-07-15 修回日期:2021-09-26 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 张展,姬小明
  • 作者简介:杜甫,主要从事烟草栽培及烟草化学研究,E-mail: 834681855@qq.com
  • 基金资助:
    河南省烟草公司三门峡市公司项目(2022411200200004x);国家级大学生创新创业项目(202010466038)

Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings

Du Fu1,2(), Xia Maolin1(), Liu Xinyuan3, Yu Zhaojin1, Zhang Zhan4(), Liu Yunfei1, Ji Xiaoming1()   

  1. 1College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2China Tobacco Hubei Industry Co., Ltd., Wuhan 430040, Hubei, China
    3Technology Center, Sanmenxia Branch of Henan Tobacco Company, Sanmenxia 472400, Henan, China
    4Technology Center, China Tobacco Henan Industry Co., Ltd., Zhengzhou 450008, Henan, China
  • Received:2021-07-15 Revised:2021-09-26 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhang Zhan,Ji Xiaoming

摘要:

为缓解镉(Cd)对烟苗生长发育的毒害作用,考察新型丙烯酰胺/羧甲基纤维素/生物炭复合水凝胶(AM/CMC/B)对水溶液中Cd2+的去除效果,并通过盆栽试验探讨AM/CMC/B缓解烟苗Cd胁迫的效应。结果表明,AM/CMC/B可有效去除水中Cd2+,改善Cd胁迫下烟苗表型;AM/CMC/B处理下烟苗的最大叶长、最大叶宽、最大叶面积、总根长、总根表面积、平均根径、根尖数和根体积分别显著增加38.28%、30.01%、79.19%、83.31%、83.97%、54.44%、88.21%和261.56%;烟苗地上部分的鲜重和干重分别增加了98.39%和84.22%,地下部分的鲜重和干重分别增加了130.67%和231.82%,烟苗净光合速率、SPAD值和气孔导度显著增加62.03%、29.61%和84.42%,丙二醛含量显著降低36.61%,烟苗抗氧化活性和代谢物含量提高。可见,AM/CMC/B可以显著提高Cd胁迫下烟苗的耐受性。

关键词: 羧甲基纤维素, 生物炭, 水凝胶, 镉胁迫, 烟苗

Abstract:

In order to alleviate the toxic effect of cadmium (Cd) on the growth and development of tobacco seedlings, the removal effects of new acrylamide/carboxymethylcellulose/biochar composite hydrogel (AM/CMC/B) on Cd2+ in aqueous solution was investigated, and the effects of AM/CMC/B on alleviating Cd stress of tobacco seedlings was studied by pot experiment. The results showed that AM/CMC/B could effectively remove Cd2+ from water and improve the phenotype of tobacco seedlings under Cd stress. Under AM/CMC/B treatment, the maximum leaf length, maximum leaf width, maximum leaf area, total root length, total root surface area, average root diameter, root tip number and root volume increased significantly by 38.28%, 30.01%, 79.19%, 83.31%, 83.97%, 54.44%, 88.21% and 261.56%, respectively. The fresh and dry weight of aboveground part of tobacco seedlings increased by 98.39% and 84.22%, the fresh and dry weight of underground part of tobacco seedlings increased by 130.67% and 231.82%, respectively. The photosynthetic rate, SPAD value and stomatal conductance of tobacco seedlings significantly increased by 62.03%, 29.61% and 84.42%, the content of malondialdehyde decreased by 36.61%. The antioxidant activity and metabolite content of tobacco seedlings increased. AM/CMC/B could significantly improve the tolerance of tobacco seedlings for Cd stress.

Key words: Carboxymethyl cellulose, Biochar, Hydrogel, Cadmium stress, Tobacco seedlings

图1

AM/CMC/B(a)、AM/CMC(b)和B(c)的FT-IR

图2

不同水凝胶在不同pH下对Cd2+的平衡吸附量

图3

Cd胁迫15d烟苗的表型

图4

Cd胁迫15d烟苗的生长指标 不同小写字母表示在0.05水平上差异显著,下同

图5

Cd胁迫15d烟苗的生物量和叶片RWC

图6

Cd胁迫15d烟苗的光合特性和SPAD值

图7

Cd胁迫15d烟苗的MDA和Pro含量及CAT和POD活性

表1

不同处理烟苗代谢物的含量

代谢物类别
Metabolite category
代谢物名称
Metabolite name
保留时间
Retention time (min)
含量Content (mg/g)
CK H BH
有机酸Organic acid 苹果酸 5.26 0.255 0.349 0.359
对苯二甲酸 6.91 0.151 0.206 1.407
二十碳五烯酸 8.58 0.000 3.115 0.226
棕榈酸 8.79 1.353 1.871 2.586
亚油酸 10.80 0.239 0.380 0.792
亚麻酸 10.91 1.288 2.221 5.113
硬脂酸 11.26 0.547 0.729 0.993
有机酸总量 3.833 8.872 11.476
萜类Terpenoids 植醇 7.51 0.438 0.610 1.005
α-西柏三烯二醇 11.37 1.838 3.696 4.470
β-西柏三烯二醇 12.28 0.851 1.032 1.274
菜油甾醇 23.86 0.433 0.860 1.574
豆甾醇 24.07 1.563 2.192 3.504
β-谷甾醇 24.47 0.578 1.147 1.763
β-香树脂醇 24.59 0.297 0.540 0.904
鹅去氧胆酸 24.96 0.000 0.000 0.196
萜类总量 5.998 10.076 14.691
烷烃类Alkanes 烷烃Ⅰ 21.34 0.000 0.136 0.258
烷烃Ⅱ 21.60 0.000 0.133 0.197
烷烃Ⅲ 22.07 0.203 0.358 0.729
烷烃Ⅳ 22.22 0.102 0.155 0.301
烷烃Ⅴ 22.59 0.375 0.688 1.314
烷烃Ⅵ 22.79 0.689 0.902 1.538
烷烃Ⅶ 22.99 0.210 0.440 0.519
烷烃Ⅷ 23.13 0.121 0.329 0.461
烷烃Ⅸ 23.72 0.258 0.597 1.163
烷烃Ⅹ 23.96 0.267 0.813 1.240
烷烃总量 2.225 4.550 7.719
其他代谢物Other metabolites 丁基化羟基甲苯 6.51 0.134 0.203 0.258
新植二烯 7.23 3.753 3.423 3.214
十八醇 10.00 0.000 0.000 0.128
4,4'-亚甲基双(2-叔丁基-6-甲基苯酚) 17.82 3.076 3.610 4.691
单硬脂酸甘油酯 20.90 0.354 0.725 1.049
其他代谢物总量 7.317 7.961 9.341
代谢物总量Total metabolites 19.373 31.458 43.227
[1] Jin Y H, Clark A B, Slebos R J C, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nature Genetics, 2003, 34(3):326-329.
doi: 10.1038/ng1172
[2] Mohan D, Kumar H, Sarswat A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 2014, 236(2):513-528.
doi: 10.1016/j.cej.2013.09.057
[3] Rai V, Khatoon S, Bisht S S, et al. Effect of cadmium on growth,ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum and Thonn. Chemosphere, 2005, 61(11):1644-1650.
doi: 10.1016/j.chemosphere.2005.04.052
[4] Zhang Y, Xu S, Yang S, et al. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma, 2015, 252(3):911-924.
doi: 10.1007/s00709-014-0732-y
[5] Rizwan M, Ali S, Rehman M Z U, et al. A critical review on the effects of zinc at toxic levels of cadmium in plants. Environmental Science and Pollution Research, 2019, 26(7):6279-6289.
doi: 10.1007/s11356-019-04174-6
[6] Li J R, Xu Y M, Lin D S, et al. In situ immobilization remediation of heavy metals in contaminated soils:A review. Ecology and Environmental Sciences, 2014, 4:636-646.
[7] Sarmah D, Karak N. Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes. Carbohydrate Polymers, 2020, 242(15):116320.
doi: 10.1016/j.carbpol.2020.116320
[8] Qu P, Li Y C, Huang H Y, et al. Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+,Cd2+,and Cu2+. Journal of Hazardous Materials, 2020, 396(5):122664.
doi: 10.1016/j.jhazmat.2020.122664
[9] Hou X, Li Y, Pan Y, et al. Controlled release of agrochemicals and heavy metal ion capture dual-functional redox-responsive hydrogel for soil remediation. Chemical Communications, 2018, 54(97):13714-13717.
doi: 10.1039/C8CC07872F
[10] Liu H, Xu F, Xie Y, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of the Total Environment, 2018, 645(15):702-709.
doi: 10.1016/j.scitotenv.2018.07.115
[11] Bandara T, Xu J, Potter I D, et al. Mechanisms for the removal of Cd (II) and Cu (II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere, 2020, 254(12):126745.
doi: 10.1016/j.chemosphere.2020.126745
[12] Wang H T, Ding J, Chi Q Q, et al. The effect of biochar on soil-plant-earthworm-bacteria system in metal (loid) contaminated soil. Environmental Pollution, 2020, 263:114610.
doi: 10.1016/j.envpol.2020.114610
[13] Hecht E M, Landy D C, Ahn S, et al. Hypothesis:cadmium explains,in part,why smoking increases the risk of cardiovascular disease. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18(6):550-554.
doi: 10.1177/1074248413494815 pmid: 24038014
[14] Luo Y, Wei Y, Sun S, et al. Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. International Journal of Molecular Sciences, 2019, 20(15):3772.
doi: 10.3390/ijms20153772
[15] Zhang H, Xu Z, Huo Y, et al. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. Journal of Hazardous Materials, 2020, 398(5):122899.
doi: 10.1016/j.jhazmat.2020.122899
[16] More P, Agarwal P, Joshi P S, et al. The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity. Scientific Reports, 2019, 9(1):1-14.
doi: 10.1038/s41598-018-37186-2
[17] Duan M, Feng H L, Wang L Y, et al. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Journal of Plant Physiology, 2012, 169(9):867-877.
doi: 10.1016/j.jplph.2012.02.012
[18] Roy S K, Cho S W, Kwon S J, et al. Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS ONE, 2016, 11(2):e0150431.
doi: 10.1371/journal.pone.0150431
[19] Han R M, Lefevre I, Ruan C J, et al. NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regulation, 2012, 68(1):97-109.
doi: 10.1007/s10725-012-9697-z
[20] Shen X, Huang D Y, Ren X F, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management, 2016, 168(1):245-251.
doi: 10.1016/j.jenvman.2015.12.019
[21] Chen Q, Zhang X, Liu Y, et al. Hemin-mediated alleviation of zinc,lead and chromium toxicity is associated with elevated photosynthesis,antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regulation, 2017, 81(2):253-264.
doi: 10.1007/s10725-016-0202-y
[22] Azhar M, Rehman M Z U, Ali S, et al. Comparative effectiveness of different biochars and conventional organic materials on growth,photosynthesis and cadmium accumulation in cereals. Chemosphere, 2019, 227(7):72-81.
doi: 10.1016/j.chemosphere.2019.04.041
[23] Choppala G, Saifullah, Bolan N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 2014, 33(5):374-391.
doi: 10.1080/07352689.2014.903747
[24] Dawood M, Cao F, Jahangir M M, et al. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase,and suppressed aluminum uptake and oxidative stress in barley. Journal of Hazardous Materials, 2012, 209-210(1):121-128.
doi: 10.1016/j.jhazmat.2011.12.076
[25] Zouari M, Ahmed C B, Zorrig W, et al. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity,water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology and Environmental Safety, 2016, 128:100-108.
doi: 10.1016/j.ecoenv.2016.02.015 pmid: 26901506
[26] Pallavi S, Bhushan J A, Shanker D R, et al. Reactive oxygen species,oxidative damage,and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012(2012):1-26.
[27] Xiao J, Sun J G, Pang B, et al. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Applied Microbiology and Biotechnology, 2021, 105(2):755-768.
doi: 10.1007/s00253-020-11048-2
[1] 郭书亚, 尚赏, 汤其宁, 张艳, 卢广远. 不同轮耕方式与生物炭对土壤酶活性、土壤养分及小麦和玉米产量的影响[J]. 作物杂志, 2022, (3): 211–217
[2] 高佳, 王姣, 王松, 刘红健, 康佳, 沈弘, 王海莉, 任少勇. 生物炭基肥对马铃薯田土壤脲酶活性和产量的影响[J]. 作物杂志, 2021, (6): 134–138
[3] 汪坤, 魏跃伟, 姬小明, 云菲, 邹凯, 隆准. 生物炭基肥与哈茨木霉菌剂配施对烤烟和植烟土壤质量的影响[J]. 作物杂志, 2021, (3): 106–113
[4] 刘美菊,李江舟,计思贵,樊苗苗,谷星慧,张立猛,张劲伟,瞿兴,周文兵,林杉. 生物炭对山坡地烟叶产量和氮肥利用效率的影响效果评价[J]. 作物杂志, 2020, (1): 89–97
[5] 崔月峰,孙国才,卢铁钢,王桂艳,王健,黄文佳,栾和林. 不同秸秆还田方式对北方超级稻氮素吸收利用的影响[J]. 作物杂志, 2019, (4): 164–169
[6] 闫晶,姬文秀,石贤吉,朱诗苗,李虎林. 镉胁迫对烟草种子萌发和烟苗生长发育的影响[J]. 作物杂志, 2019, (2): 142–149
[7] 龚丝雨,钟思荣,张世川,聂亚平,梁喜欢,杨帅强,刘齐元. 增施生物炭对烤烟生长及产量、质量的影响[J]. 作物杂志, 2018, (2): 154–160
[8] 黄刘亚,孙永波,刘书武,张永辉,年夫照,顾勇. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展[J]. 作物杂志, 2017, (4): 15–20
[9] 陈盈,张满利,刘宪平,代贵金,侯守贵. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响[J]. 作物杂志, 2016, (3): 94–98
[10] 郭媛, 邱财生, 龙松华, 等. 种子萌发期亚麻种质资源耐镉性的鉴定评价[J]. 作物杂志, 2015, (6): 39–43
[11] 张少良, 穆林林, 黄静, 等. 生物黑炭添加对黑土水分梯度处理玉米苗期生长的影响[J]. 作物杂志, 2015, (5): 90–95
[12] 刘明, 来永才, 李炜, 等. 生物炭对玉米物质生产及产量的影响[J]. 作物杂志, 2015, (3): 133–138
[13] 高继平, 隋阳辉, 霍软琼, 等. 生物炭用作水稻育苗基质的研究进展[J]. 作物杂志, 2014, (2): 16–21
[14] 李玉梅, 王根林, 刘征宇, 等. 生物炭对上壤中莠去津残留消减的影响[J]. 作物杂志, 2014, (2): 137–141
[15] 张喜娟, 孟英, 唐傲, 等. 功能性材料生物炭的农田应用效应[J]. 作物杂志, 2013, (4): 20–24
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!