作物杂志,2023, 第3期: 80–85 doi: 10.16035/j.issn.1001-7283.2023.03.011

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

糜子矮秆突变体海5农艺性状及对GA3的敏感性鉴定

郭英杰1,3(), 刘洋1,3, 刘晓婕1,3, 魏玮1,3, 王瑶1,3, 张帅1, 王振山2,3, 闫留延2,3, 朱学海1,3(), 贾小平2,3()   

  1. 1张家口市农业科学院,075000,河北张家口
    2河南科技大学农学院,471000,河南洛阳
    3张家口市杂交黍子技术创新中心,075000,河北张家口
  • 收稿日期:2022-01-11 修回日期:2022-03-25 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 朱学海,主要从事糜子遗传育种研究,E-mail:924180928@qq.com;贾小平为共同通信作者,主要从事糜子的分子生物学研究,E-mail:jiaxiaoping2007@163.com
  • 作者简介:郭英杰,主要从事糜子栽培技术研究,E-mail:gyj70@163.com
  • 基金资助:
    河北省科技厅项目(21326339D);河北省高层次人才资助项目(A201903020);张家口市科技局项目(1911016C-3)

The Agronomic Characteristics and Sensitivity Identification to GA3 of a Dwarf Mutant Hai 5 in Panicum miliaceum L.

Guo Yingjie1,3(), Liu Yang1,3, Liu Xiaojie1,3, Wei Wei1,3, Wang Yao1,3, Zhang Shuai1, Wang Zhenshan2,3, Yan Liuyan2,3, Zhu Xuehai1,3(), Jia Xiaoping2,3()   

  1. 1Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    2College of Agronomy, Henan University of Science and Technology, Luoyang 471000, Henan, China
    3Zhangjiakou Hybrid Broomcorn Millet Technical Innovation Center, Zhangjiakou 075000, Hebei, China
  • Received:2022-01-11 Revised:2022-03-25 Online:2023-06-15 Published:2023-06-16

摘要:

从形态学、细胞生物学角度对利用EMS诱变石湖千斤糜得到的矮秆突变体海5(dm5)的农艺性状及喷施赤霉素(GA3)后表型特征进行研究。结果表明,dm5株高为60.72cm,幼苗期叶片呈黄色,随着植株成熟逐渐变绿。相比野生型wt260,dm5的株高、穗柄长和穗长极显著减小,分蘖数极显著增多,各茎节长度均极显著减小,第1~4茎节减小相对较多。喷施外源GA3后,dm5的株高、穗柄长和穗长极显著增大,茎节数无明显变化,初步推测dm5植株对外源GA3敏感,为内源GA3合成缺陷型矮秆突变体。dm5第1~4节间长度均极显著增大,第5~8节间长度无明显变化,说明基部茎节长度对糜子矮秆突变体的株高影响较大。观察主茎纵切细胞发现,造成dm5植株矮化的原因可能是茎节纵向细胞长度减小,喷施GA3后植株增高是由于茎节纵向细胞长度伸长。综上,突变体dm5可作为糜子矮秆育种材料。

关键词: 糜子, 矮秆突变体, 农艺性状, GA3

Abstract:

A dwarf mutant Hai 5 (dm5) in Panicum miliaceum L. was generated by EMS (ethyl methyl sulfonic acid) mutagenesis in landrace/historical cultivar Shihuqianjinmei, and its agronomic characteristics and phenotypic characteristics after spraying GA3 were analyzed using the morphological and cytological methods. The results showed that the plant height of dm5 was 60.72cm. The leaves were yellow at seedling stage and gradually turned green as the plant matured. Compared with wild type wt260, the plant height, panicle handle length, panicle height and internodes length of dm5 were significantly decreased, in which the 1st to 4th internodes were relatively decreased, as well as the number of tillers increased significantly. After spraying exogenous GA3, the plant height, panicle handle length and panicle height of dm5 increased significantly, while the number of stem nodes did not change significantly. It was preliminarily speculated that dm5 was sensitive to exogenous gibberellin and was a endogenous gibberellin synthesis defect type dwarf mutant. The internode length from the 1st to the 4th increased significantly, while the internode length from the 5th to the 8th had no significant change, indicating that the base stem node length had a great influence on the plant height of dwarf mutant in P.miliaceum L.. Longitudinal observation of the main stem cells revealed that the dwarfing of dm5 might be caused by the decrease in the length of the longitudinal cells of the stem node, and the increase of the plant heigth after spraying GA3 was caused by the elongation of the longitudinal cells. In conclusion, dm5 could be used as a dwarf breeding material for P.miliaceum L..

Key words: Panicum miliaceum L., Dwarf mutant, Agronomic characteristics, GA3

图1

wt260、dm5苗期及成熟期植株

表1

不同生长时期wt260和dm5的SPAD对比

生长时期Growth stage wt260 dm5
苗期Seedling stage 30.14±0.53A 19.96±0.77B
抽穗期Earing stage 31.53±0.65A 31.16±0.47A
成熟期Mature stage 24.40±1.18B 29.61±1.69A

表2

wt260及dm5农艺性状

农艺性状Agronomic trait wt260 dm5
株高Plant height (cm) 104.72±2.63 60.72±1.15**
茎粗Stem diameter (mm) 6.36±0.44 5.48±0.40
茎节数Number of internode 8.70±0.26 8.60±0.16
分蘖数Tiller number 1.50±0.22 6.40±0.56**
穗柄长Panicle handle length (cm) 10.11±0.59 6.42±0.35**
穗长Panicle height (cm) 16.12±0.68 13.52±0.47**
倒3叶长度Inverted 3 leaf length (cm) 37.58±1.07 35.87±1.06
倒3叶宽度Inverted 3 leaf width (cm) 2.82±0.17 2.92±0.07
倒3叶叶面积Inverted 3 leaf area (cm2) 85.67±7.19 83.83±3.23

图2

wt260及dm5节间长度变化 “**”代表差异极显著(P < 0.01),下同

表3

喷施GA3前后wt260及dm5主要表型变化

指标
Index
材料
Material
处理Treatment
对照
Control
喷施GA3
Spraying GA3
株高Plant height (cm) wt260 104.72±2.63 133.20±3.43**
dm5 60.72±1.15 79.20±2.01**
茎节数Number of internodes wt260 8.70±0.26 9.20±0.37
dm5 8.60±0.16 8.20±0.37
穗柄长
Panicle handle length (cm)
wt260 10.11±0.59 12.80±1.24*
dm5 6.42±0.35 9.58±0.27**
穗长Panicle length (cm) wt260 16.12±0.68 19.00±0.96*
dm5 13.52±0.47 16.70±1.03**

图3

喷施GA3前后wt260(a)及dm5(b)节间长度变化

图4

喷施GA3前后wt260及dm5主茎纵切细胞

[1] Lu H, Zhang J, Liu K, et al. Earliest domestication of common millet (Panicum miliaceum L.) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18):7367-7372.
[2] 杜春微, 高梦晗, 刘庆, 等. 黄米品质特性研究. 食品工业, 2018, 39(2):83-87.
[3] 董文轩, 杨文武, 武祎凡, 等. 青稞、荞麦、黍子、糜子、莜麦对于生长猪的营养价值评定. 中国畜牧杂志, 2019, 55(10):88-93.
[4] 乔治军. 糜子产业发展现状与思路. 作物杂志, 2013(5):25-27.
[5] 李星聪, 李强, 郭世华, 等. 30份糜子高代矮化品系主要农艺性状分析. 分子植物育种, 2022, 20(12):4075-4084.
[6] 杨志远. 矮秆基因RHT18对普通小麦农艺性状的效应及其对外源GA3的响应. 杨凌:西北农林科技大学, 2016.
[7] 田秀苓.小麦矮秆基因RHT24图位克隆与功能解析. 北京: 中国农业科学院, 2021.
[8] 钟明志, 魏淑红, 彭正松, 等. 小麦RHT矮秆基因研究和应用综述. 分子植物育种, 2018, 16(20):6670-6677.
[9] 石磊. 水稻矮秆窄叶突变体基因DNL3的图位克隆. 长沙:湖南农业大学, 2016.
[10] Wu Y, Fu Y, Zhao S, et al. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnology Journal, 2016, 14(1):377-386.
doi: 10.1111/pbi.12391 pmid: 25923523
[11] 王元东, 段民孝, 邢锦丰, 等. 玉米理想株型育种的研究进展与展望. 玉米科学, 2008, 16(3):47-50.
[12] 徐敏, 石海春, 余学杰, 等. 一个玉米矮秆突变体K123d的遗传鉴定. 植物遗传资源学报, 2017, 18(1):155-163.
[13] Ito A, Yasuda A, Yamaoka K, et al. Brachytic 1 of barley (Hordeum vulgare L.) encodes the α subunit of heterotrimeric G protein. Plant Physiology, 2017, 213:209-215.
[14] Multani S D. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302(5642):81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[15] Chen Y, Hou M, Liu L, et al. The maize DWARF 1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiology, 2014, 166(4):2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[16] Larsso S J, Lipka A E, Buckler E S, et al. Lessons from dwarf 8 on the strengths and weaknesses of structured association mapping. PLoS Genetics, 2013, 9(2):e1003246.
doi: 10.1371/journal.pgen.1003246
[17] 杨睿, 张正, 杨丽莉, 等. 玉米矮杆突变体a5的表型鉴定及转录组分析. 山西大学学报(自然科学版), 2020, 43(3):597-603.
[18] 董春林, 翟广谦, 张正, 等. 玉米矮秆突变体a2的表型鉴定及转录组分析. 玉米科学, 2019, 27(4):52-57.
[19] 张磊, 何继红, 董孔军, 等. 氮肥对粳性和糯性糜子干物质积累和产量性状及氮肥利用效率的影响. 核农学报, 2021, 35(12):2860-2868.
doi: 10.11869/j.issn.100-8551.2021.12.2860
[20] Zhang Y Y, Gao X L, Li J, et al. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biology, 2019, 19(1):397.
doi: 10.1186/s12870-019-2001-x pmid: 31510928
[21] 刘敏轩, 许月, 陆平. 中国野生黍稷资源收集保存与遗传多样性研究进展. 植物遗传资源学报, 2020, 21(6):1435-1445.
doi: 10.13430/j.cnki.jpgr.20200522001
[22] 党科, 吕思明, 宫香伟, 等. 种植密度对糜子不同生育时期饲料品质的影响. 西北农业学报, 2021, 30(7):989-999.
[23] 郝小花, 向玉婷, 曾孟, 等. 水稻矮杆突变体的细胞学特征及基因定位研究. 生命科学研究, 2021, 25(1):39-47.
[24] 马宁. 甘蓝型油菜株高基因定位及候选基因分析. 杨凌:西北农林科技大学, 2021.
[25] 曹丽, 钱鹏, 张紫晋, 等. 航天搭载小麦矮秆突变体DMR88-1矮化效应分析. 核农学报, 2015, 29(11):2049-2057.
doi: 10.11869/j.issn.100-8551.2015.11.2049
[26] Rebetzke G J, Ellis M H, Bonnett D G, et al. The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Research, 2011, 24(3):323-331.
[27] Gooding M J, Addisu M, Uppal R. Effect of wheat dwarfing genes on nitrogen-use efficiency. Journal of Agricultural Science, 2012, 150(1):3-22.
[28] 崔淑佳, 潘晓萍, 高居荣, 等. 不同小麦品种(系)株高及节间长度研究. 山东农业科学, 2014, 46(10):19-22.
[29] 魏国才. 矮秆玉米的选育与利用. 黑龙江农业科学, 1999(3):64-65.
[30] 苏亚蕊, 孙少光, 刘浩婷, 等. 不同小麦品种(系)抗倒伏性状多样性分析. 麦类作物学报, 2021, 41(10):1238-1246.
[31] 勾玲, 赵明, 黄建军, 等. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008, 34(4):653-661.
[32] 程富丽, 杜雄, 刘梦星, 等. 玉米倒伏及其对产量的影响. 玉米科学, 2011, 19(1):105-108.
[1] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[2] 卢映吉, 杨晓梦, 普晓英, 李霞, 杨丽娥, 杨砚斌, 曾亚文. 不同季节播种和割苗对大麦优良品种农艺性状的影响[J]. 作物杂志, 2023, (3): 215–220
[3] 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 86–93
[4] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同筋型小麦品种产量及农艺性状的调控效应[J]. 作物杂志, 2023, (2): 131–137
[5] 曹志敏, 范保杰, 刘长友, 张志肖, 曹玉梅, 王彦, 苏秋竹, 王珅, 刘建军, 田静. 60Co辐射对绿豆主要农艺性状影响及特异突变体创制[J]. 作物杂志, 2023, (2): 30–35
[6] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 基于GGE双标图的高粱品种农艺性状和稳产性分析[J]. 作物杂志, 2023, (2): 36–45
[7] 宿翠翠, 毋玲玲, 赵玺, 施志国, 周彦芳, 魏玉杰. 种植时间对甘肃引黄灌区红花生长发育、品质及产量的影响[J]. 作物杂志, 2023, (1): 176–183
[8] 黄贵斌, 关耀兵, 牛永岐, 周丽蕾, 赵永峰. 103份鹰嘴豆种质资源12个主要农艺性状综合鉴定评价[J]. 作物杂志, 2023, (1): 6–13
[9] 史关燕, 王娟菲, 麻慧芳, 赵雄伟. 谷子杂交种产量与主要农艺性状的相关性及回归分析[J]. 作物杂志, 2022, (6): 82–87
[10] 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98–104
[11] 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255–260
[12] 吕建珍, 任莹, 王宏勇, 张庭军, 马建萍, 赵凯. 264份谷子主要育成品种(系)表型多样性综合评价[J]. 作物杂志, 2022, (4): 22–31
[13] 王晓春, 朱得新, 杨天辉, 王川, 杨炜迪, 高婷, 梁小军. 宁夏引黄灌区不同苜蓿品种主要农艺性状关联分析及干草产量比较[J]. 作物杂志, 2022, (4): 32–36
[14] 简俊涛, 王清华, 杨辉, 刘骏, 朱传杰, 李玉鹏, 张彬, 张震, 全洪雷, 谢彦周, 王成社. 黄淮南部小麦新品种(系)在过渡生态区南阳盆地利用分析[J]. 作物杂志, 2022, (4): 46–53
[15] 宋全昊, 金艳, 宋佳静, 陈杰, 赵立尚, 白冬, 陈亮, 朱统泉. 35份人工合成六倍体小麦的综合评价[J]. 作物杂志, 2022, (4): 69–76
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!