作物杂志,2023, 第5期: 179–186 doi: 10.16035/j.issn.1001-7283.2023.05.026

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系

胡锐(), 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华()   

  1. 广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室/广东省水稻工程实验室,510640,广东广州
  • 收稿日期:2022-05-14 修回日期:2022-06-12 出版日期:2023-10-15 发布日期:2023-10-16
  • 通讯作者: 钟旭华,主要从事水稻高产高效栽培生理研究,E-mail:xzhong8@163.com
  • 作者简介:胡锐,主要从事水稻高产高效栽培生理研究,E-mail:hurui@gdaas.cn
  • 基金资助:
    国家级科技成果奖励培育专项(粤农科研〔2018〕45号);广东省农业科学院创新基金项目(202105);广东省农业科学院导师制项目(R2020QD-002);广东现代农业产业技术体系水稻创新团队(2021KJ105);广东省自然科学基金(2021A1515010617);广东省自然科学基金(2022A1515012313);广东省重点实验室运行费(2020B1212060047)

Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization

Hu Rui(), Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua()   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, Guangdong, China
  • Received:2022-05-14 Revised:2022-06-12 Online:2023-10-15 Published:2023-10-16

摘要:

水稻“三控”施肥技术是一项氮肥优化管理技术。采用田间试验对三控施肥法(TC)与农民习惯施肥法(FP)处理下的水稻根系形态指标、根系活力、氮素吸收利用、干物质积累和产量等性状进行测定。TC早季和晚季总施氮量分别为150和180kg N/hm2,FP分别为180和210kg N/hm2。TC氮肥按照基肥40%、保蘖肥20%、穗肥30%、粒肥10%施用,FP氮肥按照基肥30%、回青肥20%、分蘖肥30%、长粗肥(移栽后18~20d施入)20%的比例施用。结果表明,2019和2020年TC氮素吸收利用率分别比FP提高25.9和15.2个百分点,氮素农学利用率分别提高89.6%和74.4%,氮肥偏生产力分别提高30.8%和38.3%;TC处理的水稻孕穗期根长、根系表面积和根系体积均显著高于FP,孕穗期的根系活力2年分别比FP高41.6%和13.6%。2019年TC处理的水稻分蘖期根冠比显著高于FP。相关性分析显示,氮素吸收利用率与孕穗期根系活力呈显著正相关,氮素农学利用率与孕穗期根长、根干重呈显著正相关,氮肥偏生产力与孕穗期根系表面积呈显著正相关。研究结果表明,促进水稻生育中期的根系发育及活力是三控施肥法氮利用效率提高的生理基础。

关键词: 水稻, 氮肥运筹, 三控施肥技术, 氮利用效率, 根系

Abstract:

The “Three Controls” nutrient management technology (TC) of rice is an optimized nitrogen management fertilization technology. Field experiments were conducted with TC and farmers’ fertilization practice (FP) as treatments. Root morphological traits, root activity, nitrogen uptake, dry matter accumulation, and grain yield were investigated. Under TC treatment, the total nitrogen input was 180kg N/ha in the late season and 150kg N/ha in the early season, respectively. Under FP treatment, the total nitrogen input was 210kg N/ha in the late season and 180kg N/ha in the early season, respectively. TC nitrogen fertilizer was applied according to base fertilizer 40%, tillering fertilizer 20%, ear fertilizer 30%, grain fertilizer 10%. FP nitrogen fertilizer was applied according to the proportion of base fertilizer 30%, return fertilizer 20%, tillering fertilizer 30%, long coarse fertilizer (applied 18-20d after transplanting) 20%. The results showed that compared to FP, the nitrogen recovery efficiency of TC was increased by 25.9 and 15.2 percentage points in 2019 and 2020, respectively. The nitrogen agronomic efficiency was increased by 89.6% and 74.4% in 2019 and 2020, respectively. Compared to FP, the partial factor productivity of TC was increased by 30.8% and 38.3% in 2019 and 2020, respectively. The root length, root surface area and root volume at booting stage of TC were significantly higher than those of FP. Compared to FP, the root activities of TC at booting stage were increased by 41.6% and 13.6% in 2019 and 2020, respectively. The root-shoot ratio of TC at tillering stage was significantly higher than that of FP in 2019. Correlation analysis results indicated that nitrogen recovery efficiency was positively correlated with the root vigor at booting stage. Nitrogen agronomic efficiency was positively correlated with the root length and root dry weight at booting stage. Partial factor productivity of nitrogen was positively correlated with root surface area at booting stage. These results indicated that the enhanced root growth and root vigor during panicle development contribute to the improvement of nitrogen use efficiency under TC.

Key words: Rice, Nitrogen fertilizer management, “Three Controls” nutrient management technology, Nitrogen use efficiency, Root

图1

试验基地水稻全生育期的温度和太阳辐射

表1

氮肥运筹对水稻物质生产和稻谷产量的影响

年份
Year
处理
Treatment
干物质积累Dry matter accumulation 籽粒产量
Grain yield
穗分化始期Panicle initiation 抽穗期Heading 成熟期Maturity
2019 N0 2594b 8286b 10 737b 5506a
FP 4099a 12 514a 13 276ab 6236a
TC 3657ab 11 751ab 15 812a 6920a
2020 N0 860b 3372b 7883c 4269b
FP 2702a 7176a 11 657b 6452a
TC 2180a 6577a 13 264a 7429a
方差分析ANOVA
年份Year (Y) ** ** ** ns
处理Treatment (T) ** ** ** **
年份×处理Y×T ns ns ns ns

图2

氮肥运筹对水稻生长速率的影响 不同字母表示差异达到显著水平(P < 0.05),下同

表2

氮肥运筹对水稻氮素吸收动态的影响

年份
Year
处理
Treatment
吸氮量Nitrogen uptake
穗分化始期
Panicle initiation
抽穗期
Heading
成熟期
Maturity
2019 N0 51.7b 85.3b 100.2b
FP 120.3a 184.9a 170.1a
TC 100.9a 194.7a 206.7a
2020 N0 13.3b 32.9b 67.7c
FP 37.3a 60.4a 94.9b
TC 27.6a 68.4a 113.1a
方差分析ANOVA
年份Year (Y) ** ** **
处理Treatment (T) ** ** **
年份×处理Y×T * ** **

图3

氮肥运筹对水稻氮素吸收速率的影响

表3

氮肥运筹对水稻氮素利用效率的影响

年份
Year
处理
Treatment
RE
(%)
AE
(kg/kg)
PEP
(kg/kg)
2019 FP 33.3a 6.7b 34.7b
TC 59.2a 12.7a 45.4a
2020 FP 15.1a 12.1a 35.8a
TC 30.3a 21.1a 49.5a
方差分析ANOVA
年份Year (Y) ** * ns
处理Treatment (T) * ** **
年份×处理Y×T ns ns ns

表4

氮肥运筹对水稻根系形态及活力的影响

年份
Year
处理
Treatment
分蘖期Tillering stage 孕穗期Booting stage 抽穗期Heading stage
根长
Root
length
(cm)
根干重
Root
dry
matter
(g)
根系
表面

Root
surface
area
(cm2)
根系
体积
Root
volume
(cm3)
根长
Root
length
(cm)
根干重
Root
dry
matter
(g)
根系
表面

Root
surface
area
(cm2)
根系
体积
Root
volume
(cm3)
根系
活力
Root
vigor
[μg α-NA/
(g DW·h)]
颖花
根活量
Spikelet-
root activity
[μg α-NA/
(spikelet·h)]
伤流量
Xylem
sap
(g)
颖花根活量
[g/(穗·h)]
Spikelet-root
activity
[g/(spikelet·h)]
2019 FP 18.7a 0.54a 558a 4.9a 22.2b 2.07a 1969a 25.8a 305a 4.31a 2.51a 1.43a
TC 21.3a 0.58a 594a 5.4a 27.5a 2.32a 2270a 30.9a 432a 6.60a 2.87a 1.58a
2020 FP 17.0a 0.28a 317a 2.5a 33.7a 2.58a 2072a 26.0a 147a 2.39a 7.09a 1.26a
TC 15.9a 0.24a 270b 2.2a 33.2a 2.68a 2237a 28.5a 167a 2.46a 7.02a 1.26a
方差分析ANOVA
年份Year (Y) * ** ** ** ** ** ns ns ** ** ** *
处理Treatment (T) ns ns ns ns ** ns * * ns ns ns ns
年份×处理Y×T ns ns ns ns ** ns ns ns ns ns ns ns

图4

氮肥运筹对水稻根冠比的影响

表5

氮素利用率与根系形态及活力指标的相关系数(n=12)

生育期
Growth stage
指标
Index
RE AE PFP
分蘖期
Tillering stage
根冠比 -0.375 0.604* 0.296
根长 0.528 -0.406 -0.096
根干重 0.679* -0.509 -0.127
根系表面积 0.643* -0.508 -0.144
根系体积 0.654* -0.478 -0.110
孕穗期
Booting stage
根冠比 -0.412 0.683* 0.375
根长 -0.349 0.656* 0.354
根干重 -0.255 0.723** 0.471
根系表面积 0.257 0.536 0.710**
根系体积 0.478 0.287 0.544
根系活力 0.637* -0.308 0.128
颖花根活量 0.590* -0.291 0.115
抽穗期
Heading stage
伤流量 -0.529 0.469 0.166
颖花根活量 0.372 -0.411 -0.140
[1] Fan J B, Zhang Y L, Turner D, et al. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 2010, 20(4):446-455.
doi: 10.1016/S1002-0160(10)60034-3
[2] 李洪亮, 孙玉友, 曲金玲, 等. 施氮量对东北粳稻根系形态生理特征的影响. 中国水稻科学, 2012, 26(6):723-730.
[3] 魏海燕, 张洪程, 张胜飞, 等. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008, 34(3):429-436.
[4] 徐国伟, 王贺正, 翟志华, 等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10):132-141.
[5] 李敏, 张洪程, 杨雄, 等. 水稻高产氮高效型品种的根系形态生理特征. 作物学报, 2012, 38(4):648-656.
[6] Sui B A, Feng X M, Tian G L, et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 2013, 150:99-107.
doi: 10.1016/j.fcr.2013.06.012
[7] 田卡, 钟旭华, 黄农荣. “三控”施肥技术对水稻生长发育和氮素吸收利用的影响. 中国农学通报, 2010, 26(16):150-157.
[8] 钟旭华, 黄农荣, 彭少兵, 等. 水稻纹枯病发生与群体物质生产及产量形成的关系研究. 江西农业大学学报, 2010, 32(5):901-907.
[9] Liang K M, Zhong X H, Huang N R, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system. Science of the Total Environment, 2017, 609:46-57.
doi: 10.1016/j.scitotenv.2017.07.118
[10] Pan J F, Zhao J L, Liu Y Z, et al. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Scientific Reports, 2019, 9:13.
doi: 10.1038/s41598-018-36788-0
[11] 萧浪涛, 王三根. 植物生理学实验技术. 北京: 中国农业出版社, 2005.
[12] 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21 (1):23-35.
[13] Jia Z T, von Wiren N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. Journal of Experimental Botany, 2020, 71(15):4393-4404.
doi: 10.1093/jxb/eraa033 pmid: 31970412
[14] 赵全志, 高尔明, 黄丕生, 等. 水稻穗颈节与基部节间伤流的比较及其氮素调控研究. 作物学报, 2001, 27(1):103-109.
[15] Wu H, Xiang J, Zhang Y P, et al. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Scientific Reports, 2018, 8:11.
doi: 10.1038/s41598-017-18324-8
[16] 刘宝玉, 徐家宽, 王余龙, 等. 不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响. 作物学报, 1997, 23(6):699-706.
[17] 郁燕, 彭显龙, 刘元英, 等. 前氮后移对寒地水稻根系吸收能力的影响. 土壤, 2011, 43(4):548-553.
[18] 胡香玉, 郭九信, 田广丽, 等. 不同供氮模式对水稻根系形态及生理特征的影响. 中国水稻科学, 2017, 31(1):72-80.
doi: 10.16819/j.1001-7216.2017.6050
[19] 龙瑞平, 张朝钟, 戈芹英, 等. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析. 作物杂志, 2022(1):124-129.
[20] 王维金, 徐竹生, 鲍隆清. 重施穗肥对杂交水稻的产量和氮素营养的影响. 华中农业大学学报, 1993, 12(3):209-214.
[21] 钟旭华, 黄农荣, 郑海波, 等. 不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响. 杂交水稻, 2007(4):62-66,70.
[22] Ding Y F, Maruyama S. Proteins and carbohydrates in developing rice panicles with different numbers of spikelets-cultivar difference and the effect of nitrogen topdressing. Plant Production Science, 2004, 7(1):16-21.
doi: 10.1626/pps.7.16
[23] Kamiji Y, Yoshida H, Palta J A, et al. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3):242-247.
doi: 10.1016/j.fcr.2011.03.016
[1] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[2] 刘秋员, 李猛, 高阳光, 史孟豫, 卫云飞, 季新, 厉励, 刘亚丽, 王付娟. 减氮并调整氮肥运筹模式对常规粳稻产量及稻米品质的影响[J]. 作物杂志, 2023, (5): 131–137
[3] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[4] 张蛟, 陈澎军, 陈艳, 韩继军, 崔士友. 滩涂水产养殖池复垦种稻短期内土壤特性变化及水稻产量表现[J]. 作物杂志, 2023, (4): 118–125
[5] 陈玥, 宫亮, 金丹丹, 张鑫, 李波, 邹晓锦, 隋世江, 叶鑫, 刘艳. 北方粳稻最优产量氮肥阈值周年变化及其影响因素分析[J]. 作物杂志, 2023, (4): 144–151
[6] 赵海燕, 赵丽洁, 韩根兰, 王江, 王子建, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮锌配施对谷子根系形态及锌含量的影响[J]. 作物杂志, 2023, (4): 152–158
[7] 花芹, 林泉祥, 宋远辉, 孙家猛, 张祖普, 陈庆全, 李金才, 张海涛. 水稻粉质胚乳突变体cse的表型分析及基因定位[J]. 作物杂志, 2023, (4): 22–30
[8] 杨洪伟, 张丽颖, 李晓辉. 盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究[J]. 作物杂志, 2023, (4): 253–259
[9] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[10] 栾金华, 宋欣阳, 汪磊, 孙丽丽, 程艳双, 董浩, 张佳, 程效义, 徐海. 辽宁省水稻新品系苗期耐盐性差异研究[J]. 作物杂志, 2023, (3): 20–26
[11] 吴艳, 柳开楼, 张景云, 宋惠洁, 胡丹丹. 增施大豆豆粕及豆粕炭对酸性水稻土的改良效果及对水稻产量的影响[J]. 作物杂志, 2023, (3): 200–204
[12] 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94–100
[13] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[14] 王荣升, 牟凤臣, 李坤, 张微, 刘会, 丁国华, 杨光, 王南博, 张国民, 刘玉明, 陶永庆. 寒地粳稻碾磨品质和食味品质相关性状的综合分析[J]. 作物杂志, 2023, (2): 115–120
[15] 梁萍, 张永清, 张萌, 薛小娇, 李平平, 张文燕, 王丹, 赵刚. PAM施用深度对盐碱胁迫下藜麦生长及生理指标的影响[J]. 作物杂志, 2023, (2): 178–185
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!