作物杂志,2023, 第6期: 127–134 doi: 10.16035/j.issn.1001-7283.2023.06.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

土壤细菌群落结构及功能多样性对烤烟连作的响应

敖金成1(), 王政2, 杨启港2, 李智2, 韦建玉2()   

  1. 1云南农业大学植物保护学院,650201,云南昆明
    2广西中烟工业有限责任公司,530001,广西南宁
  • 收稿日期:2022-02-10 修回日期:2023-06-12 出版日期:2023-12-15 发布日期:2023-12-15
  • 通讯作者: 韦建玉,主要从事烟草栽培与营养生理研究,E-mail:jtx_wjy@163.com
  • 作者简介:敖金成,主要从事作物根际微生态调控技术研究,E-mail:89693180@qq.com
  • 基金资助:
    广西中烟工业有限责任公司科技项目(GXZYCX2019B004);广西中烟工业有限责任公司科技项目(GXZYCX2021B010)

Response of Soil Bacterial Community Structure and Functional Diversity to Flue-Cured Tobacco Continuous Cropping

Ao Jincheng1(), Wang Zheng2, Yang Qigang2, Li Zhi2, Wei Jianyu2()   

  1. 1College of Plant Protection, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2China Tobacco Guangxi Industrial Co., Ltd., Nanning 530001, Guangxi, China
  • Received:2022-02-10 Revised:2023-06-12 Online:2023-12-15 Published:2023-12-15

摘要:

探索烤烟连作对土壤细菌群落结构及功能多样性的影响,对深入理解连作障碍成因,制定土壤保育措施具有一定的理论和指导意义。利用高通量测序技术对云南省3个核心烟区不同连作年限(0、2、4和8年)耕层土壤细菌16S rDNA V3-V4片段进行测序,并结合土壤化学性质进行细菌群落分布与环境因子的相关性分析。结果表明,云南曲靖、红河烟区烟田土壤排前10位的细菌优势菌属相对丰度累积总和分别为11.43%~17.46%和15.82%~22.35%,细菌群落丰富度和多样性均随连作年限的延长极显著或显著增加,文山烟区烟田排前10位的土壤优势细菌菌属相对丰度累积总和为17.66%~23.08%,随连作年限的延长呈先降后升的趋势,细菌群落丰富度和多样性随连作年限的延长极显著提高;氨基酸代谢和其他次生代谢产物合成功能丰度是连作土壤细菌群落的主要代谢路径,随连作年限的增加区域间存在差异。冗余分析结果表明,土壤化学性质与细菌群落分布密切相关,其中pH是影响土壤细菌群落变化的核心环境因子,贡献值(18.12%)最高。综合而言,不同烟区土壤细菌群落多样性、功能多样性和优势菌属相对丰度随连作年限的增加,其变化趋势存在差异,调控土壤pH有利于维持相对稳定的土壤微环境。

关键词: 连作, 土壤健康, 细菌群落演化, 功能多样性, 高通量测序

Abstract:

Exploring the effects of flue-cured tobacco continuous cropping on soil bacterial community structure and functional diversity have theoretical and guiding significance for understanding the causes of continuous cropping obstacles and formulating soil conservation measure. The 16S rDNA V3-V4 fragments of soil bacteria were sequenced by high-throughput sequencing technology in three main tobacco fields of Yunnan province with different continuous cropping years (0, 2, 4 and 8 years), and the correlation between bacterial community distribution and environmental factors were analyzed. The results showed that the cumulative sum of the relative abundance of the top 10 dominant bacteria in Qujing and Honghe were 11.43%-17.46%, and 15.82%- 22.35%, respectively. The richness and diversity of bacterial community were significantly increased with the increasing of continuous cropping years. The cumulative relative abundance of the top 10 soil dominant bacteria in Wenshan tobacco field ranged from 17.66% to 23.08%, and showed a trend of ‘first decreasing and then increasing’ with the extension of continuous cropping years. The richness and diversity of bacterial community was increased significantly with the extension of continuous cropping years. The abundances of amino acid metabolism and other secondary synthesis functions in soil bacteria community were the main metabolic pathway of continuous cropping soil bacteria, and increased with the increase of continuous cropping years, and there were differences between regions. The soil chemical properties were closely related to bacterial community distribution, and pH contributed the highest (18.12%) to soil bacterial community changes. In general, the diversity of soil bacterial community and functional diversity in different tobacco-producing area, and the relative abundance of dominant bacteria had different trends with the increase of continuous cropping years. Regulating soil pH was beneficial to maintaining a relatively stable of micro-environment of soil.

Key words: Continuous cropping, Soil health, Bacterial community evolution, Functional diversity, High- throughput sequencing

表1

供试样本采集信息

产区
Producing area
样地
Sample plot
海拔
Altitude (m)
经度
Longtitude
纬度
Latitude
曲靖Qujing 旧县 1925.3 103°23′10″ 25°20′20″
红河Honghe 白水 1803.9 103°52′26″ 24°40′03″
文山Wenshan 五珠 1647.5 104°31′23″ 23°48′56″

图1

连作烟田土壤细菌优势菌群属水平丰度堆叠图

图2

不同植烟区连作土壤细菌群落Sobs和Shannon指数 不同大写和小写字母分别表示处理间在0.01和0.05水平差异显著

图3

不同植烟区连作烟田土壤细菌群落的β多样性

图4

连作烟田土壤细菌群落功能丰度热图

表2

连作烟田土壤化学性质

项目Item Q0 Q2 Q4 Q8 H0 H2 H4 H8 W0 W2 W4 W8
pH 5.7A 5.0B 5.3B 5.2B 7.1a 7.0a 6.6b 6.5b 5.1b 5.2ab 5.5a 5.6a
有机质Organic matter (g/kg) 31.4b 40.6a 44.5a 46.0a 18.4B 32.2A 37.4A 37.5A 41.0a 27.4b 33.0ab 31.6ab
碱解氮Alkaline hydrolyzed N (mg/kg) 70.0b 78.4ab 63.0b 100.8a 41.2C 76.9B 113.2A 112.0A 61.0bc 50.5c 81.0ab 100.8a
速效磷Available P (mg/kg) 9.1B 15.8B 12.4B 44.6A 3.9D 16.5C 54.3A 27.4B 16.5C 53.9A 54.8A 30.3B
速效钾Available K (mg/kg) 27.3B 44.2A 35.7A 119.6A 69.3D 320.2B 756.3A 148.5C 88.5C 267.9A 188.2A 167.7B

图5

土壤化学因子与细菌群落分布关联分析 N、P、K、C分别表示土壤碱解氮、速效磷、速效钾和有机质。“*”表示显著相关,P < 0.05;“**”和“***”分别表示在P < 0.01和P < 0.001水平极显著相关

[1] Schloter M, Dilly O, Munch J. Indicators for evaluating soil quality. Agriculture,Ecosystem & Environment, 2003, 98(1/2/3):255-262.
doi: 10.1016/S0167-8809(03)00085-9
[2] 张科, 袁玲, 施娴, 等. 不同植烟模式对烤烟产质量、土壤养分和酶活性的影响. 植物营养与肥料学报, 2010, 16(1):124-128.
[3] 邓阳春, 黄建国. 长期连作对烤烟产量和土壤养分的影响. 植物营养与肥料学报, 2010, 16(4):840-845.
[4] Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry, 2011, 43(1):20-30.
doi: 10.1016/j.soilbio.2010.09.005
[5] Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646):513-518.
doi: 10.1038/nature21417
[6] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64(1):807-838.
doi: 10.1146/arplant.2013.64.issue-1
[7] Li M S, Guo R, Yu F, et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 2018, 19(2):443.
doi: 10.3390/ijms19020443
[8] Kwak M J, Kong H G, Choi K, et al. Author correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11):1117.
doi: 10.1038/nbt1118-1117
[9] 尚志强. 烟草黑胫病病原、发生规律及综合防治研究进展. 中国农业科技导报, 2007, 9(2):73-76.
[10] 刘贤文, 郭华春. 马铃薯与玉米复合种植对土壤化感物质及土壤细菌群落结构的影响. 中国生态农业学报(中英文), 2020, 28(6):794-802.
[11] 解开治, 徐培智, 李康活, 等. 三种不同种植模式对土壤细菌群落多样性的影响. 植物营养与肥料学报, 2009, 15(6):1107-1113.
[12] 向立刚, 汪汉成, 郭华, 等. 健康与感染黑胫病烟株根际土壤与茎秆细菌群落结构与多样性. 中国烟草学报, 2020, 26(1):100-108.
[13] 何川, 刘国顺, 蒋士君. 连作对植烟土壤微生物群落多样性的影响. 江西农业大学学报, 2012, 34(4):658-663.
[14] 段玉琪, 晋艳, 陈泽斌, 等. 烤烟轮作与连作土壤细菌群落多样性比较. 中国烟草学报, 2012, 18(6):53-59.
[15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[16] 敖金成, 李博, 阎凯, 等. 连作对云南典型烟区植烟土壤细菌群落多样性的影响. 农业资源与环境学报, 2022, 39(1):46-54.
[17] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4):411-420.
doi: 10.3724/SP.J.1003.2013.10033
[18] Maron P A, Sarr A, Kaisermann A, et al. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 2018, 84(9):e02738-17.
[19] Morris A, Meyer K, Bohannan B. Linking microbial communities to ecosystem functions: What we can learn from genotype- phenotype mapping in organisms. Philosophical Transactions B, 2020, 375:20190244.
doi: 10.1098/rstb.2019.0244
[20] Naeenm S, Hahn D R, Schuurman G. Producer-decomposer co- dependency influences biodiversity effects. Nature, 2000, 403:762-764.
doi: 10.1038/35001568
[21] 吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系. 中国农业科学, 2007, 40(10):2274-2280.
[22] 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析. 中国农业科学, 2007, 40(10):2267-2273.
[23] Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2):14-20.
[24] 韦建玉, 王政, 徐天养, 等. 秸秆覆盖与揭膜互作对坡耕地烟田土壤细菌群落及烟叶品质的影响. 土壤通报, 2021, 52(1):82-89.
[25] Fontúrbel M T, Barreiro A, Vega J A, et al. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 2012, 191:51-60.
doi: 10.1016/j.geoderma.2012.01.037
[26] Philippot L, Spor A, Hěnault C, et al. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 2013, 7:1609-1619.
doi: 10.1038/ismej.2013.34
[27] 张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国农业生态学报, 2019, 27(3):358-368.
[28] 李忠佩, 吴晓晨, 陈碧云. 不同利用方式下土壤有机碳转化及微生物群落功能多样性研究. 中国农业科学, 2007, 6(10):1235-1246.
[29] Duan R, Long X E, Tang Y F, et al. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil. Journal of Soils and Sediments, 2018, 18(1):24-38.
doi: 10.1007/s11368-017-1738-9
[30] Tao Y Z, Di X, Forestry S O, et al. Fire interference on forest soil microbial communities and the mechanism: a review. Scientia Silvae Sinicae, 2013, 49(11):146-157.
[31] Wan W, Tan J, Wang Y, et al. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction,and function. Science of The Total Environment, 2020, 700(15):134418.
doi: 10.1016/j.scitotenv.2019.134418
[32] Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE, 2011, 6(2):el7000.
[33] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
doi: 10.1128/AEM.00335-09 pmid: 19502440
[34] Gu Y F, Wang Y Y, Lu S E, et al. Long-term fertilization structures bacterial and archacal communities along soil depth gradient in a paddy soil. Frontiers in Microbiology, 2017, 8:1516.
doi: 10.3389/fmicb.2017.01516
[35] Li C, Yan K, Tang L, et al. Changes in deep soil microbial communities due to long-term fertilization. Soil Biology & Biochemistry, 2014, 75:264-272.
doi: 10.1016/j.soilbio.2014.04.023
[1] 刘素军, 蒙美莲, 苏日古嘎. 干旱胁迫及复水对马铃薯糖代谢途径中基因表达影响的研究[J]. 作物杂志, 2023, (1): 38–45
[2] 孙子欣, 蔡柏岩. 连作对土壤微生物菌群影响及修复研究进展[J]. 作物杂志, 2022, (6): 7–13
[3] 徐燕, 牛俊峰, 陈利军, 王世强, 董忠民, 王喆之. 基于高通量测序技术研究栽培苍术根际土壤微生物变化[J]. 作物杂志, 2022, (5): 221–228
[4] 谢奎忠, 孙小花, 罗爱花, 柳永强, 唐德晶, 朱永永, 胡新元. 基施锌肥对长期连作马铃薯抗病性相关酶活性、土传病害和产量的影响[J]. 作物杂志, 2022, (4): 154–159
[5] 马义虎, 何贤彪, 齐文, 王旭辉, 陈剑, 周翠, 张中熙. 农业废弃物与化肥减量配施对连作晚稻产量、品质及土壤肥力的影响[J]. 作物杂志, 2022, (3): 115–124
[6] 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 1–5
[7] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1–7
[8] 崔勇. 马铃薯连作造成的影响及连作障碍防控技术[J]. 作物杂志, 2018, (2): 87–92
[9] 王春蕾,方志军,许艳蕊,卢晓平,穆春华,单凯,郝鲁江. 基于高通量测序技术分析使它隆对玉米根系内生菌多样性的影响[J]. 作物杂志, 2018, (1): 160–165
[10] 廖登群, 庞小存, 孙鹏,. 地黄耐连作种质资源的筛选及其可遗传性初探[J]. 作物杂志, 2015, (6): 54–58
[11] 刘伟, 章云云, 魏莹莹, 等. 耕作模式对白花丹参连作上壤理化性质及酶活性的影响[J]. 作物杂志, 2015, (1): 72–77
[12] 潘文杰, 姜超英, 陈懿, 等. 烤烟连作对土壤及烟株氮素特征的影响[J]. 作物杂志, 2010, (5): 84–88
[13] 王彩萍, 左联忠, 侯小峰, 等. 利用连作胁迫法探索绿豆耐连作育种方法[J]. 作物杂志, 2010, (5): 99–100
[14] 白艳茹, 马建华, 樊明寿. 马铃薯连作对土壤酶活性的影响[J]. 作物杂志, 2010, (3): 34–36
[15] 肖占文, 王多成, 闫吉治, 等. 不同连作年限对玉米制种产量及其农艺经济性状的影响[J]. 作物杂志, 2010, (2): 107–109
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!