作物杂志,2024, 第6期: 2638 doi: 10.16035/j.issn.1001-7283.2024.06.004
Sun Mingmao1(), Liu Lixia2, Sun Hu1, Cui Di3
摘要:
彩色稻米蕴藏的营养价值、健康效益和市场经济价值正不断吸引着国内外水稻育种工作者和稻米消费者的兴趣。以龙锦1号/香软米1578高世代重组自交系群体223个家系为试验材料,测定糙米花色苷含量、千粒重、穗粒数等11个指标,并进行变异分析、方差分析、相关分析、主成分分析、聚类分析和差异显著性分析,筛选出优异色稻新品系和高花色苷水稻新品系。结果表明,糙米花色苷含量为2.30~12 011.04 mg/kg,平均值为594.91 mg/kg。糙米粒色等级与千粒重、糙米粒宽、糙米粒厚呈显著负相关,与糙米花色苷含量呈极显著正相关。家系42的综合排名最高,其余依次为家系96、152、99、186,这5个优异色稻家系的糙米花色苷含量为20.74~ 12 011.04 mg/kg。高亲龙锦1号的糙米花色苷含量为4489.36 mg/kg,有8个家系的糙米花色苷含量显著增加,其中家系152、186的糙米花色苷含量分别为12 011.04、8421.58 mg/kg,两者既属于优异家系又属于高花色苷家系,为创制的优异高花色苷水稻新种质。
[1] |
Sasaki T, Burr B. International rice genome sequencing project: the effort to completely sequence the rice genome. Current Opinion in Plant Biology, 2000, 3(2):138-141.
doi: 10.1016/s1369-5266(99)00047-3 pmid: 10712951 |
[2] | Ito V C, Lacerda L G. Black rice (Oryza sativa L.): a review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 2019, 301:125304. |
[3] |
Wang W J, Zhao M H, Zhang G C, et al. Weedy rice as a novel gene resource: a genome-wide association study of anthocyanin biosynthesis and an evaluation of nutritional quality. Frontiers in Plant Science, 2020, 11:878.
doi: 10.3389/fpls.2020.00878 pmid: 32595693 |
[4] | Yoon K D, Lee J Y, Kim T Y, et al. In vitro and in vivo anti- hyperglycemic activities of taxifolin and its derivatives isolated from pigmented rice (Oryzae sativa L. cv. Superhongmi). Journal of Agricultural and Food Chemistry, 2020, 68(3):742-750. |
[5] |
Yang Y, Andrews M C, Hu Y, et al. Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglyceridemia in dyslipidemic rats induced by high fat diets. Journal of Agricultural and Food Chemistry, 2011, 59(12):6759- 6764.
doi: 10.1021/jf201079h pmid: 21568342 |
[6] | 陈萍萍, 游月华, 戴展峰, 等. 有色稻抗氧化作用及其与花色苷和类黄酮含量的关系. 热带农业科学, 2021, 41(2): 83-87. |
[7] | 李静, 焦雪, 华泽田, 等. 20种黑米的总酚含量与抗氧化活性. 食品工业科技, 2017, 38(20):25-29. |
[8] | Zhang L N, Cui D, Ma X D, et al. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chemistry, 2023, 399:133926. |
[9] | Zhao M C, Huang C H, Mao Q Q, et al. How anthocyanin biosynthesis affects nutritional value and anti-inflammatory effect of black rice. Journal of Cereal Science, 2021, 101:103295. |
[10] | Rebeira S P, Prasantha B D R, Jayatilake D V, et al. A comparative study of dietary fiber content, in vitro starch digestibility and cooking quality characteristics of pigmented and non-pigmented traditional and improved rice (Oryza sativa L.). Food Research International, 2022, 157:111389. |
[11] | Zuo Y Y, Peng C, Liang Y T, et al. Black rice extract extends the lifespan of fruit flies. Food & Function, 2012, 3(12):1271-1279. |
[12] | Yamuangmorn S, Dell B, Prom-u-ghai C. Anthocyanin and phenolic acid profiles in purple, red and non-pigmented rice during germination. Chiang Mai University Journal of Natural Sciences, 2020, 19(4):865-878. |
[13] | Pitija K, Nakornriab M, Sriseadka T, et al. Anthocyanin content and antioxidant capacity in bran extracts of some Thai black rice varieties. International Journal of Food Science and Technology, 2013, 48:300-308. |
[14] |
Hosoda K, Sasahara H, Matsushita K, et al. Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red grains. Asian-Australasian Journal of Animal Sciences, 2018, 31(8):1213-1220.
doi: 10.5713/ajas.17.0655 pmid: 29514441 |
[15] | Zelenskaya O V, Zelensky G L, Ostapenko N V, et al. Genetic resources of rice (Oryza sativa L.) with colored pericarp. Vavilov Journal of Genetics and Breeding, 2018, 22(3):296-303. |
[16] |
Oikawa T, Maeda H, Oguchi T, et al. The birth of a black rice gene and its local spread by introgression. The Plant Cell, 2015, 27:2401-2414.
doi: 10.1105/tpc.15.00310 pmid: 26362607 |
[17] | Yang W, Chen L, Zhao J L, et al. Genome-wide association study of pericarp color in rice using different germplasm and phenotyping methods reveals different genetic architectures. Frontiers in Plant Science, 2022, 13:841191. |
[18] | Xia D, Zhou H, Wang Y P, et al. How rice organs are colored:the genetic basis of anthocyanin biosynthesis in rice. The Crop Journal, 2021, 9(3):598-608. |
[19] | Han Z Y, Li F, Qiao W H, et al. Identification of candidate genes and clarification of the maintenance of the green pericarp of weedy rice grains. Frontiers in Plant Sciences, 2022, 13:930062. |
[20] | Kim B, Piao R H, Lee G, et al. OsCOP1 regulates embryo development and flavonoid biosynthesis in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2021, 134:2587-2601. |
[21] |
孙明茂, 韩龙植. 粳稻龙锦1号/香软米1578杂交组合F5家系群糙米总花色苷含量变异及相关性分析. 植物遗传资源学报, 2017, 18(2):186-192,200.
doi: 10.13430/j.cnki.jpgr.2017.02.003 |
[22] | 叶宁, 程朝平, 杨德卫, 等. 不同有色稻品种资源花色苷含量分析. 福建农业科技, 2019(6):1-5. |
[23] |
徐清宇, 余静, 朱大伟, 等. 基于主成分分析和聚类分析的不同水稻品种营养品质评价研究. 中国稻米, 2022, 28(6):1-8.
doi: 10.3969/j.issn.1006-8082.2022.06.001 |
[24] | 王诗文. 糙米花色苷优异种质资源及其杂种优势的研究. 福州:福建农林大学, 2016. |
[25] | 付俊生. 水稻品种资源花色苷和相关酶含量与SSR标记的关联分析. 哈尔滨:东北农业大学, 2020. |
[26] | Ryu S N, Park S Z, Ho C T. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. Journal of Food and Drug Analysis, 1998, 6(4):729-736. |
[27] | 常汇琳. 水稻花色苷和原花色苷含量的QTL定位及与产量性状的研究. 哈尔滨:东北农业大学, 2015. |
[28] | Yamsaray M, Sreewongchai T, Phumichai C, et al. Yield and nutritional properties of improved red pericarp Thai rice varieties. ScienceAsia, 2023, 49(2):155-160. |
[29] | 任邵琦, 徐智慧, 高作利. 东北地区部分彩色稻主要农艺性状相关性、主成分及聚类分析. 分子植物育种, 2022, 20(17):5779-5787. |
[30] | 张庆, 庄静. 高迪市特色稻品种(系)展示总结. 北方水稻, 2018, 48(5):42-44. |
[31] | 王玉娟. 有色稻与常规粳稻主要农艺性状差异的比较. 农业科技通讯, 2015(5):205-208. |
[1] | 马丽娜, 魏玉明, 文莉芳, 张学俭, 杨钊, 黄杰, 张圣昌, 李小雨, 刘欢, 杨发荣. 云南元谋地区22份藜麦种质的农艺性状及营养品质分析[J]. 作物杂志, 2024, (6): 4754 |
[2] | 孙远涛, 龙文靖, 刘天朋, 赵甘霖, 丁国祥, 向箭宇, 李元, 黄磊, 倪先林. 12个糯高粱亲本的主要性状配合力及相关性分析[J]. 作物杂志, 2024, (6): 8490 |
[3] | 张东杰, 张喆钧, 阿依丁库力·沙黑多拉, 桑塔那提·阿斯卡尔, 吾买尔夏提·塔汉. 新疆糜子地方种杂交后代农艺性状的遗传规律研究[J]. 作物杂志, 2024, (6): 97102 |
[4] | 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119124 |
[5] | 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175180 |
[6] | 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241246 |
[7] | 董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 2934 |
[8] | 马延华, 孙德全, 李绥艳, 林红, 潘丽艳, 李东林, 范金生, 吴建忠, 杨国伟. 黑龙江省玉米地方品种主要农艺性状综合评价及优异种质资源筛选[J]. 作物杂志, 2024, (4): 103112 |
[9] | 袁迪, 智慧, 王海岗, 张慧, 姚琦, 梁红凯, 王君杰, 陈凌, 刁现民, 贾冠清. 我国谷子登记品种遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 1423 |
[10] | 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203208 |
[11] | 李春花, 吴晗, 加央多拉, 王春龙, 王艳青, 任长忠. 播期对甜荞品种(系)农艺性状及产量的影响[J]. 作物杂志, 2024, (4): 216222 |
[12] | 宋全昊, 曹燕威, 金艳, 肖永贵, 宋佳静, 赵立尚, 陈杰, 白冬, 朱统泉. 50份ICARDA新引进小麦种质资源的综合评价[J]. 作物杂志, 2024, (4): 5461 |
[13] | 解慧芳, 魏萌涵, 宋中强, 刘金荣, 王素英, 邢璐, 王淑君, 刘海萍, 贾小平, 宋慧. 谷子主要性状主基因多基因混合遗传模型分析[J]. 作物杂志, 2024, (4): 8289 |
[14] | 包雪莲, 文峰, 金晓光, 呼瑞梅, 黄前晶, 张桂华, 齐金全, 白颖哲, 乌月汗, 白乙拉图. 蒙东粮食主产区不同谷子品种的适应性分析[J]. 作物杂志, 2024, (3): 201206 |
[15] | 刘繁超, 方淑梅, 王庆燕, 王晗昕, 牛娟娟, 梁喜龙. 不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响[J]. 作物杂志, 2024, (2): 7179 |
|