作物杂志,2025, 第1期: 35–45 doi: 10.16035/j.issn.1001-7283.2025.01.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

基于表型性状及SSR标记的扁豆种质资源遗传多样性分析

姚陆铭1(), 袁娟2, 马晓红1, 王彪1()   

  1. 1上海交通大学农业与生物学院,200240,上海
    2上海市浦东新区农业技术推广中心,201201,上海
  • 收稿日期:2023-10-08 修回日期:2024-06-14 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 王彪,主要从事豆类育种工作,E-mail:wangbiao@sjtu.edu.cn
  • 作者简介:姚陆铭,主要从事豆类资源分析工作,E-mail:lmyao@sjtu.edu.cn
  • 基金资助:
    上海市科技兴农项目(2021-02-08-00-12-F00766)

Genetic Diversity Analysis of Lablab purpureus Germplasm Resources Based on Morphological Trait and SSR Markers

Yao Luming1(), Yuan Juan2, Ma Xiaohong1, Wang Biao1()   

  1. 1School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
    2Shanghai Pudong New District Agricultural Technology Extending Center, Shanghai 201201, China
  • Received:2023-10-08 Revised:2024-06-14 Online:2025-02-15 Published:2025-02-12

摘要:

利用17个表型性状及31对多态性SSR标记对收集自国内不同地区及印度、美国等国家的115份扁豆种质资源进行遗传多样性分析。结果表明,9个质量性状存在25种变异类型,多样性指数范围为0.23~1.19,平均多样性指数0.72;8个数量性状变异系数范围为8.97%~36.23%,大部分性状呈现出丰富的遗传多样性。主成分分析发现,9个主成分因子累计贡献率为77.39%,可反映扁豆资源的大部分遗传信息。31对SSR标记在115份扁豆材料中共检测到106个多态性位点,平均有效等位基因数目为1.96个,引物的多态性信息含量在0.05~ 0.69,群体多样性指数范围为0.05~0.74,平均为0.45。聚类分析发现,在欧式距离为3.8时可将扁豆资源分为6个类群,主成分分析发现不同类群相对独立,类群内个体分布则相对集中。群体遗传结构分析将扁豆资源分为2个类群。群体遗传分析方法均显示扁豆资源类群分类与其地理来源存在不一致性。结果表明扁豆种质资源具有较高的遗传多样性,研究结果为扁豆种质资源的利用及新品种的开发提够了重要参考。

关键词: 扁豆, 种质资源, 表型性状, SSR标记, 遗传多样性

Abstract:

The genetic diversity of 115 Lablab purpureus germplasms from China, India and the United States was analyzed using 17 phenotypic traits and 31 pairs of polymorphic SSR markers. The results showed that a total of 25 types of variation were observed for the nine qualitative traits. The diversity index (H′) ranged from 0.23 to 1.19 with an average of 0.72. The coefficient of variation of eight quantitative traits was 8.97%-36.23%, and most of the phenotypic traits showed rich genetic diversity. Most of genetic information could represented by nine principle component factors with 77.39% of cumulative contribution rate according to principal component analysis (PCA). The 106 alleles were amplified by 31 pairs of SSR primers in L. purpureus germplasms with an average of 1.96 alleles per marker. The polymorphic information content (PIC) of each marker varied from 0.05 to 0.69, and the group genetic diversity indexes ranged from 0.05 to 0.74 with an average of 0.45. The unweighted pair-group method with arithmetic means (UPGMA) cluster analysis divided the L. purpureus germplasms into six groups at the genetic distance of 3.8. Additionally, according to PCA, materials in each group were distributed concentrated while each group was independent to each other. All tested materials were divided into two groups by population genetic structure analysis. There was no consistency between the cluster of L. purpureus germplasms and their geographical origin according to all the UPGMA, PCA and genetic structure analysis. This study demonstrated that L. purpureus germplasms had a high level of genetic diversity. These findings provided scientific basis for the utilization of germplasms resources and breeding of L. purpureus.

Key words: Lablab purpureus, Germplasm resource, Phenotypic trait, SSR marker, Genetic diversity

表1

扁豆种质资源列表

序号Number 编号Code 来源Origin 序号Number 编号Code 来源Origin 序号Number 编号Code 来源Origin
1 CNSHN1 中国上海 40 CNHN07 中国河南 79 US12 美国
2 CNSH01 中国上海 41 CNHN10 中国河南 80 US13 美国
3 CNSH02 中国上海 42 CNHN12 中国河南 81 US14 美国
4 CNSH03 中国上海 43 CNHN14 中国河南 82 US15 美国
5 CNSH04 中国上海 44 CNHN15 中国河南 83 US16 美国
6 CNSH05 中国上海 45 CNHN16 中国河南 84 US17 美国
7 CNSH06 中国上海 46 CNHN17 中国河南 85 US18 美国
8 CNSH07 中国上海 47 CNHN19 中国河南 86 US19 美国
9 CNSH08 中国上海 48 CNHN20 中国河南 87 US20 美国
10 CNSH09 中国上海 49 CNN01 中国黑龙江 88 US21 美国
11 CNSH10 中国上海 50 CNN02 中国黑龙江 89 US22 美国
12 CNSH11 中国上海 51 CNN03 中国黑龙江 90 US23 美国
13 CNSH12 中国上海 52 CNN04 中国黑龙江 91 US24 美国
14 CNSH13 中国上海 53 CNN06 中国黑龙江 92 US25 美国
15 CNSH14 中国上海 54 CNN07 中国黑龙江 93 US26 美国
16 CNSH15 中国上海 55 CNN08 中国黑龙江 94 US27 美国
17 CNSH16 中国上海 56 CNN09 中国黑龙江 95 US28 美国
18 CNSH17 中国上海 57 CNN10 中国黑龙江 96 US29 美国
19 CNSH18 中国上海 58 IND01 印度 97 US30 美国
20 CNSH19 中国上海 59 IND02 印度 98 US31 美国
21 CNSH21 中国上海 60 IND03 印度 99 US32 美国
22 CNSH22 中国上海 61 IND04 印度 100 US33 美国
23 CNSH23 中国上海 62 IND05 印度 101 US34 美国
24 CNSH24 中国上海 63 IND06 印度 102 US35 美国
25 CNSH26 中国上海 64 IND07 印度 103 US36 美国
26 CNSH27 中国上海 65 IND10 印度 104 US37 美国
27 CNSH28 中国上海 66 IND11 印度 105 US38 美国
28 CNSH29 中国上海 67 IND12 印度 106 US39 美国
29 CNSH30 中国上海 68 IND13 印度 107 US41 美国
30 CNSH31 中国上海 69 US01 美国 108 US42 美国
31 CNSH32 中国上海 70 US02 美国 109 US43 美国
32 CNSH33 中国上海 71 US03 美国 110 US44 美国
33 CNSH34 中国上海 72 US04 美国 111 US45 美国
34 CNSH35 中国上海 73 US05 美国 112 US47 美国
35 CNHN01 中国河南 74 US07 美国 113 US48 美国
36 CNHN02 中国河南 75 US08 美国 114 US49 美国
37 CNHN03 中国河南 76 US09 美国 115 US50 美国
38 CNHN04 中国河南 77 US10 美国
39 CNHN06 中国河南 78 US11 美国

表2

扁豆质量性状赋值

性状
Trait
缩写
Abbreviation
赋值
Quantified value
下胚轴颜色Hypocotyl color HC 绿=1,紫=2,深紫=3
叶脉颜色Vein color
VPC
绿=1,深绿=2,紫=3,深紫=4
翼瓣色Petal color PC 紫=1,白=2
嫩荚主色
Predominant color of young pod
PCYP
绿=1,紫=2
嫩荚次色
Secondary color of young pod
SCYP
紫=1,红=2,绿=3
荚形Pod shape
PS
扁条=1,长条=2,细长条=3
种子形状Seed shape SS 卵圆=1,圆=2
种皮主色
Predominant color of episperm
PCE
黑=1,黄=2,棕=3
种皮次色
Secondary color of episperm
SCE
黑=1,红=2,棕=3

表3

扁豆质量性状遗传多样性分析

性状
Trait
符合性状赋值资源数量
Germplasms meeting the trait assignment
资源频次分布
Frequency distribution (%)
多样性指数
H'
1 2 3 4 1 2 3 4
下胚轴颜色Hypocotyl color 16 64 35 13.91 55.65 30.43 0.96
叶脉颜色Vein color 34 5 51 25 29.57 4.35 44.35 21.74 1.19
翼瓣色Petal color 108 7 93.91 6.09 0.23
嫩荚主色Predominant color of young pod 63 52 54.78 45.22 0.69
嫩荚次色Secondary color of young pod 81 10 24 70.43 8.70 20.87 0.79
荚形Pod shape 87 27 1 75.65 23.48 0.87 0.59
种子形状Seed shape 96 19 83.48 16.52 0.45
种皮主色Predominant color of episperm 75 6 34 65.22 5.22 29.57 0.79
种皮次色Secondary color of episperm 30 79 6 26.09 68.70 5.22 0.76

表4

扁豆数量性状遗传多样性分析

农艺性状Agronomic trait 平均值±标准差Mean±SD 范围Range 变异系数CV (%) 多样性指数H′
始花天数Emergent to flowering (d) 52.72±6.99 38.00~63.00 13.26 1.86
花序长度Inflorescence length (cm) 23.36±7.41 3.42~62.90 31.70 1.90
叶绿素含量Chlorophyll content 35.41±3.18 24.64~41.82 8.97 1.97
荚宽Pod width (mm) 24.40±8.84 9.50~79.48 36.23 1.29
荚厚Pod thickness (mm) 5.11±1.59 2.00~14.55 31.07 1.85
单荚重Single pod weight (g) 4.88±1.60 1.61~12.58 33.56 1.83
荚长Pod length (mm) 71.13±12.09 57.58~133.15 17.00 1.63
百粒重100-grain weight (g) 44.23±5.56 29.00~63.30 12.57 1.99

表5

扁豆种质资源表型性状相关性

性状
Trait
花序长度
Inflorescence
length
叶绿素含量
Chlorophyll
content
荚宽
Pod
width
荚厚
Pod
thickness
单荚重
Single pod
weight
荚长
Pod
length
百粒重
100-grain
weight
始花天数
Emergent to
flowering
花序长度Inflorescence length 1.000
叶绿素含量Chlorophyll content 0.062 1.000
荚宽Pod width 0.014 0.008 1.000
荚厚Pod thickness 0.028 0.110 0.065 1.000
单荚重Single pod weight -0.150 0.130 0.150 0.130 1.000
荚长Pod length -0.094 -0.140 0.073 -0.170 0.340 1.000
百粒重100-grain weight 0.089 0.120 -0.015 0.160 -0.071 -0.240* 1.000
始花天数Emergent to flowering 0.069 0.081 -0.260** 0.077 -0.024 -0.110 -0.004 1.000

表6

扁豆资源表型性状主成分分析

指标
Index
第1主成分
PC1
第2主成分
PC2
第3主成分
PC3
第4主成分
PC4
第5主成分
PC5
第6主成分
PC6
第7主成分
PC7
第8主成分
PC8
第9主成分
PC9
下胚轴颜色Hypocotyl color 0.84 -0.05 -0.16 0.09 0.14 -0.10 -0.16 0.02 -0.12
叶脉颜色Vein color 0.72 -0.10 -0.24 0.04 0.04 -0.22 -0.13 0.38 -0.07
翼瓣色Petal color -0.58 -0.04 0.37 -0.20 -0.18 -0.10 -0.24 -0.01 0.10
嫩荚主色
Predominant color of young pod
0.59 0.04 0.18 0.15 -0.37 -0.20 0.30 -0.37 0.12
嫩荚次色
Secondary color of young pod
-0.78 -0.24 0.22 -0.01 0.11 -0.01 -0.15 -0.02 -0.08
荚形Pod shape -0.22 -0.32 -0.13 0.60 0.05 0.22 0.48 -0.05 0.10
种子形状Seed shape -0.19 -0.44 -0.27 0.37 0.41 -0.16 -0.03 -0.08 -0.10
种皮主色
Predominant color of episperm
-0.16 0.17 0.47 0.15 -0.05 -0.23 0.50 0.57 0.01
种皮次色
Secondary color of episperm
0.24 0.40 0.60 -0.09 0.16 0.14 0.03 0.01 -0.37
始花天数Emergent to flowering 0.21 -0.11 0.37 0.41 -0.54 0.10 -0.26 -0.15 0.13
花序长度Inflorescence length 0.15 0.00 -0.20 -0.11 -0.18 0.86 0.06 0.20 -0.10
叶绿素含量Chlorophyll content 0.25 -0.07 0.37 0.21 0.44 0.20 -0.28 0.20 0.55
荚宽Pod width 0.04 0.45 -0.24 -0.42 0.26 0.04 0.29 -0.25 0.40
荚厚Pod thickness 0.26 -0.02 0.55 0.07 0.47 0.13 0.10 -0.34 -0.24
单荚重Single pod weight -0.10 0.77 -0.08 0.23 0.03 -0.10 -0.10 0.07 0.07
荚长Pod length -0.39 0.46 -0.40 0.32 0.01 -0.02 -0.06 -0.04 -0.22
百粒重100-grain weight -0.10 0.56 -0.02 0.50 0.04 0.11 -0.19 -0.07 0.03
贡献率Contribution rate (%) 17.93 11.15 10.66 8.35 7.09 6.36 5.81 5.31 4.73
累计贡献率
Cumulative contribution rate (%)
17.93
29.08
39.74
48.09
55.18
61.54
67.35
72.66
77.39

表7

扁豆材料的遗传多样性

标记名称SSR marker Na Ne I He PIC
AW781285 3 1.94 0.75 0.48 0.39
Sat_069 4 1.45 0.61 0.31 0.29
Sat_155 3 2.23 0.91 0.55 0.47
Sat_420 4 2.29 0.99 0.56 0.49
Sat_421 3 1.33 0.48 0.25 0.23
Sat_423 4 1.71 0.77 0.42 0.38
Satt032 3 1.66 0.72 0.40 0.36
Satt235 4 1.33 0.54 0.25 0.24
Satt284 2 1.05 0.12 0.05 0.05
Satt289 3 2.01 0.75 0.50 0.39
Satt327 4 1.65 0.71 0.39 0.35
Satt328 4 2.82 1.13 0.65 0.58
Satt335 3 1.11 0.23 0.10 0.10
Satt347 3 1.88 0.76 0.47 0.39
Satt385 3 1.98 0.81 0.49 0.42
Satt393 5 1.81 0.86 0.45 0.40
Satt520 3 2.17 0.84 0.54 0.43
Satt522 5 2.04 0.92 0.51 0.45
Satt545 3 2.35 0.94 0.57 0.49
Satt555 3 2.09 0.79 0.52 0.41
Satt556 3 1.13 0.27 0.12 0.11
Satt564 4 1.86 0.80 0.46 0.40
Satt567 4 2.20 0.89 0.55 0.45
Satt597 3 2.04 0.76 0.51 0.40
Satt702 4 3.85 1.37 0.74 0.69
Satt727 4 2.81 1.15 0.64 0.58
Sct_064 4 2.65 1.07 0.62 0.55
Sct_065 3 1.97 0.74 0.49 0.39
Sct_147 3 1.53 0.58 0.35 0.30
Sct_190 3 2.19 0.92 0.54 0.48
Sctt011 2 1.45 0.49 0.31 0.26
平均Mean 3.42 1.96 0.76 0.45 0.38

图1

扁豆资源基于农艺性状聚类分析

表8

扁豆类群数量性状遗传多样性分析

性状Trait I II III
材料数量
Number of germplasms
58
26
3
始花天数
Emergent to flowering (d)
57.05±3.31
47.81±5.56
45.00±1.41
花序长度
Inflorescence length (cm)
22.78±5.89
22.94±3.98
24.11±0.96
叶绿素含量Chlorophyll content 35.62±2.86 36.06±2.99 34.37±2.65
荚宽Pod width (mm) 21.99±2.62 23.52±3.19 73.83±4.11
荚厚Pod thickness (mm) 5.37±1.50 5.27±1.12 5.43±1.00
单荚重Single pod weight (g) 4.44±1.00 4.88±1.54 4.69±0.36
荚长Pod length (mm) 65.25±3.75 66.46±4.05 68.81±7.45
百粒重100-grain weight (g) 42.47±3.76 47.40±5.46 40.98±0.53
性状Trait IV V VI
材料数量
Number of germplasms
7
8
13
始花天数
Emergent to flowering (d)
56.57±1.92
55.25±3.83
41.38±4.91
花序长度
Inflorescence length (cm)
23.79±3.27
34.72±11.31
19.39±10.81
叶绿素含量
Chlorophyll content
34.19±2.68
37.14±1.65
33.00±4.23
荚宽Pod width (mm) 25.24±4.21 21.85±5.83 26.64±2.21
荚厚Pod thickness (mm) 4.31±1.47 4.34±1.41 4.43±2.34
单荚重Single pod weight (g) 6.29±2.76 5.13±1.90 5.95±2.22
荚长Pod length (mm) 106.40±11.93 79.18±2.68 83.32±6.83
百粒重100-grain weight (g) 52.34±5.55 42.19±5.52 43.65±5.80

图2

扁豆资源基于SSR标记的聚类分析

图3

扁豆种质资源主成分分析二维散点图 不同颜色代表根据SSR分子标记划分的不同类群。

图4

扁豆种质资源群体遗传结构分析 (a) lnP(D)值随K值变化折线图;(b) ΔK值随K值变化折线图;(c) 群体遗传结构示意图。

图5

扁豆材料地理来源与遗传分组之间的关系 (a) 基于SSR标记的各群体中不同地理来源扁豆所占比例;(b) 基于遗传结构分析的各群体中不同地理来源扁豆所占比例。

[1] Maass B L, Knox M R, Venkatesha S C, et al. Lablab purpureus-A Crop Lost for Africa?. Tropical Plant Biology, 2010, 3(3):123- 135.
doi: 10.1007/s12042-010-9046-1 pmid: 20835399
[2] Liu Y M, Shahed-Al-Mahmud M, Chen X, et al. A carbohydrate- binding protein from the edible lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Reports, 2020, 32(6):108016.
[3] 苏彩霞, 孟珊, 栾春荣, 等. 江苏地区扁豆主要表型性状的多样性评价. 江苏农业科学, 2021, 49(19):24-29.
[4] 姚陆铭, 武天龙. 利用SSR标记及表型多样性对扁豆遗传多样性的研究. 上海农业学报, 2016, 32(5):1-7.
[5] Vaijayanthi P V, Ramesh S, Byre Gowda M, et al. Identification of trait-specific accessions from a core set of dolichos bean germplasm. Journal of Crop Improvement, 2016, 30(2):244-257.
[6] Vaijayanthi P V, Ramesh S, Chandrashekhar A, et al. Yield stability analysis of dolichos bean genotypes using AMMI model and GGL biplot. Archives of Agriculture Sciences Journal, 2017, 9(47):4800-4805.
[7] Vaijayanthi P V, Chandrakant, Ramesh S. Hyacinth bean (Lablab purpureus L. Sweet): genetics, breeding and genomics. Advances in Plant Breeding Strategies, 2019:287-318.
[8] 孟珊, 狄佳春, 苏彩霞, 等. 江苏省扁豆地方种质资源遗传多样性评价. 植物遗传资源学报, 2021, 22(5):1258-1272.
doi: 10.13430/j.cnki.jpgr.20210302002
[9] Singh V, Wahi N, Garg G, et al. Amplified fragment length polymorphism based genetic diversity of tropical legume: Lablab purpureus var. typicus. Legume Research, 2024, 47(8):1266-1273.
[10] 苏彩霞, 栾春荣, 王彪, 等. 扁豆品种志(南方本). 北京: 化学工业出版社, 2022.
[11] 李英英, 郑云柯, 晏小霞, 等. 种质资源表型性状的遗传多样性分析. 热带作物学报, 2022, 43(1):94-100.
doi: 10.3969/j.issn.1000-2561.2022.01.013
[12] 王晓鸣, 邱丽娟, 景蕊莲, 等. 作物种质资源表型性状鉴定评价:现状与趋势. 植物遗传资源学报, 2022, 23(1):12-20.
[13] 吕建珍, 王宏勇, 任莹, 等. 不同生态区谷子品种表型鉴定及SSR遗传多样性分析. 核农学报, 2023, 37(3):471-482.
doi: 10.11869/j.issn.1000-8551.2023.03.0471
[14] Letting F K, Venkataramana P B, Ndakidemi P A. Pre-Breeding prospects of lablab (Lablab purpureus (L.) Sweet accessions in tanzania: morphological characterization and genetic diversity analysis. Agronomy, 2022, 12(10):2272.
[15] 田宗城, 王树耀, 王文龙, 等. 扁豆种质资源多样性的研究. 海南大学学报(自然科学版), 2005, 23(1):53-60.
[16] Chang Y, Liu H, Liu M, et al. The draft genomes of five agriculturally important African orphan crops. GigaScience, 2018, 8(3):1-16.
[17] Vishnu V S, Radhamany P M. Assessment of variability in Lablab purpureus (L.) sweet germplasm based on quantitative morphological and biochemical traits. Genetic Resources and Crop Evolution, 2022, 69(4):1535-1546.
[18] Kumar U, Tiwari R K, Prasad K, et al. Character association in dolichos bean [Lablab purpureus (L.) Sweet] in agro-climatic zone of North Bihar. Legume Research, 2023, 46(3):301-306.
[19] 魏广伟, 阳慧怡, 王敏, 等. 芝麻种质资源表型性状遗传多样性分析及综合评价. 江苏农业科学, 2022, 50(18):122-130.
[20] 童治军, 陈学军, 方敦煌, 等. 231份烤烟种质资源SSR标记遗传多样性及其与农艺性状和化学成分的关联分析. 中国烟草学报, 2017, 23(5):31-61.
[21] 王琰琰, 王俊, 刘国祥, 等. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析. 作物学报, 2021, 47 (7):1259-1274.
doi: 10.3724/SP.J.1006.2021.04183
[1] 颜群翔, 庞玉辉, 洪壮壮, 毕俊鸽, 王春平. 141份国内外小麦种质资源主要性状遗传多样性分析与特异性评价[J]. 作物杂志, 2025, (1): 26–34
[2] 张杰, 贾冰, 程瑞宝, 杨薇, 刘影, 张立媛, 温雅辉, 董春浩, 王振普, 琦明玉, 张清艳, 赵敏, 李志光. 东北平原生态区糜子种质资源表型多样性分析[J]. 作物杂志, 2025, (1): 76–82
[3] 张丽丽, 李振宇, 陈广红, 王绍林, 夏明, 郑英杰, 王莹, 王彤, 毛艇, 于亚辉. 基于主成分分析的特种稻种质资源营养成分分析与评价[J]. 作物杂志, 2024, (5): 40–47
[4] 毛向红, 范向斌, 白小东, 卢瑶, 杜培兵. 基于SSR分子标记的晋北地区引进马铃薯种质资源遗传多样性分析[J]. 作物杂志, 2024, (5): 54–59
[5] 袁迪, 智慧, 王海岗, 张慧, 姚琦, 梁红凯, 王君杰, 陈凌, 刁现民, 贾冠清. 我国谷子登记品种遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 14–23
[6] 李清超, 张登峰, 李春辉, 杨珊, 刘建新, 吴迅. 西南地区玉米地方种质资源遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 24–32
[7] 王璐, 邓杰, 张泽, 赵孟伟, 车欣洋, 王广义, 郭旭, 张海洋, 贺琳, 翁建峰, 徐晶宇. PEG胁迫下玉米苗期耐旱种质资源鉴定与评价[J]. 作物杂志, 2024, (4): 43–53
[8] 代涵, 申铁, 石桃雄, 黎瑞源. 油茶基因组SSR位点挖掘及遗传多样性分析[J]. 作物杂志, 2024, (3): 23–31
[9] 马红珍, 许海涛, 王月, 冯晓曦, 许波, 张军刚, 郭海斌, 王友华. 基于苞叶表型性状的玉米自交系遗传多样性及遗传距离分析[J]. 作物杂志, 2024, (3): 54–63
[10] 全成哲, 李淑芳, 李鹤南, 于维, 金京花. 吉林省73份审定水稻品种的表型性状遗传多样性研究[J]. 作物杂志, 2024, (3): 64–75
[11] 杨恩泽, 谢锐, 韩平安, 张永虎, 刘锦川, 牛素清, 温蕊, 王春勇, 金晓蕾. 内蒙古162份苦荞资源表型性状的遗传多样性及综合评价[J]. 作物杂志, 2024, (2): 15–22
[12] 陈林, 姚晓华, 姚有华, 白羿雄, 吴昆仑. 青藏高原青稞品种籽粒外观和品质性状的多样性分析[J]. 作物杂志, 2024, (2): 213–220
[13] 刘丹, 王嘉宇, 冯章丽, 冯博, 陈温福. 辽宁省粳稻品种的遗传多样性与群体结构分析[J]. 作物杂志, 2024, (1): 40–47
[14] 孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析[J]. 作物杂志, 2024, (1): 57–64
[15] 王月影, 范保杰, 曹志敏, 王彦, 苏秋竹, 张志肖, 王珅, 时会影, 沈颖超, 程须珍, 刘长友, 田静. 利用EST-SSR标记分析绿豆农家种及育成品种的遗传多样性[J]. 作物杂志, 2024, (1): 73–79
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!