作物杂志,2025, 第1期: 208–213 doi: 10.16035/j.issn.1001-7283.2025.01.026

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

甘蔗新品种的光合表型与叶片表征对干旱胁迫及复水的响应

安东升1(), 赵宝山1, 刘洋2, 严程明1, 孔冉1, 黄文甫3, 苏俊波1()   

  1. 1中国热带农业科学院南亚热带作物研究所/国家农业绿色发展长期固定观测湛江试验站/广东省旱作节水农业工程技术研究中心,524091,广东湛江
    2嘉兴职业技术学院,314036,浙江嘉兴
    3广西洋浦南华甘蔗研究院,530022,广西南宁
  • 收稿日期:2023-05-26 修回日期:2023-11-25 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 苏俊波,研究方向为宜机化甘蔗高产高糖新品种选育,E-mail:junbosu@126.com
  • 作者简介:安东升,研究方向为旱作生理生态,E-mail:dongshengan@126.com
  • 基金资助:
    农业农村部农业技术试验示范与服务支持项目(102125221630050009026);海南省自然科学基金(320MS113);中央级公益性科研院所基本科研业务费专项(1630062024024)

Effects of Drought Stress and Re-Watering on the Photosynthetic Phenotype and Leaf Characterization of New Sugarcane Varieties

An Dongsheng1(), Zhao Baoshan1, Liu Yang2, Yan Chengming1, Kong Ran1, Huang Wenfu3, Su Junbo1()   

  1. 1South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences / Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development / Guangdong Engineering Technology Research Center for Dryland and Water Saving Agriculture, Zhanjiang 524091, Guangdong, China
    2Jiaxing Vocational and Technical College, Jiaxing 314036, Zhejiang, China
    3Yangpu Nanhua Sugarcane Research Institute, Nanning 530022, Guangxi, China
  • Received:2023-05-26 Revised:2023-11-25 Online:2025-02-15 Published:2025-02-12

摘要:

季节性干旱是限制甘蔗生产的重要因素,快速无损的表型辅助育种手段能够在耐旱甘蔗新品种的早期筛选中发挥重要作用。采用桶栽方式开展3个商业主栽品种和10个自主选育甘蔗新品种的干旱胁迫与复水试验,对复水前后功能叶片光合表型的拟合参数与植株叶片表征进行测定与拟合分析。结果表明,不同耐旱甘蔗品种对干旱胁迫及复水的响应存在较大的差异,热甘16117在干旱胁迫下的光合表型优于ROC22和桂柳05136,但在复水后的单叶光合潜力(JP)却远不及后两者。卷叶能够大幅减小干旱胁迫下叶片受光面积,从而降低因光合电子传递受限引起的光损伤,卷叶数越多的品种,黄叶数相对越少,复水后植株恢复情况越好。干旱胁迫指数(δ)和卷叶数占比可用于衡量甘蔗耐旱性强弱,但复水后的光合能力(PC)才是甘蔗耐旱性评价更可靠的指标,热甘1997可作为甘蔗耐旱新品种。

关键词: 甘蔗, 耐旱, 干旱胁迫, 复水, 光合表型, 叶片表征

Abstract:

Seasonal drought is a main factor leading to sugarcane yield reduction, rapid and non-destructive phenotype assisted breeding methods holds significant potential in facilitating the early screening of drought resistant sugarcane varieties. The study measured and analyzed the fitting parameters of the functional leaf photosynthetic phenotype and plant leaf characteristics of three commercial varieties and ten new varieties response to drought stress and re-watering. The findings indicated notable variations in the response of different drought-tolerant sugarcane varieties to both drought and re-watering. All photosynthetic parameters of Regan 16117 were superior to ROC22 and Guiliu 05136 under drought stress, but the former photosynthetic potential (JP) was far lower than that of latter two after rehydration. Leaf rolling significantly reduced the leaf area exposed to direct irradiation, which was crucial to relieve photo damage induced by the limitation of photosynthetic electron transfer under drought. The varieties with more rolling leaves relatively possessed less expand and chlorosis leaves, achieved better recovery after rehydration. The drought stress index (δ) and the proportion of rolling leaves could reflect the drought stress tolerance of sugarcane, but photosynthetic capacity (PC) of calculated after rehydration considered to be more reliable for evaluating drought resistance of sugarcane varieties. Regan 1997 can be used as a new drought resistant variety.

Key words: Sugarcane, Drought resistance, Drought stress, Re-watering, Photosynthetic phenotype, Leaf characterization

表1

不同甘蔗品种干旱胁迫下与复水后叶绿素荧光特性

品种
Variety
干旱胁迫Drought stress 复水后Re-watering
αe PARsat Jmax ΦP δ αe PARsat Jmax ΦP δ
热甘1 Regan 1 0.034 961.6 16.5 0.081 0.839 0.313 969.6 128.3 0.732 0.919
热甘16239 Regan 16239 0.030 1422.7 21.1 0.092 0.718 0.299 973.7 114.9 0.710 0.972
热甘11559 Regan 11559 0.043 1038.7 24.6 0.099 0.650 0.299 941.8 128.6 0.717 0.911
热甘11713 Regan 11713 0.027 1204.3 14.7 0.058 0.547 0.309 969.2 121.9 0.715 0.915
热甘1462 Regan 1462 0.033 1180.2 12.4 0.077 0.968 0.355 1008.5 150.8 0.773 0.802
热甘1876 Regan 1876 0.028 1000.4 10.7 0.064 0.941 0.207 1364.2 167.0 0.612 0.581
热甘14291 Regan 14291 0.042 993.7 21.7 0.107 0.741 0.320 1112.5 152.6 0.713 0.758
热甘1339 Regan 1339 0.097 575.8 22.5 0.252 1.824 0.299 1302.5 170.1 0.777 0.738
热甘1997 Regan 1997 0.059 556.5 12.2 0.144 1.880 0.281 1256.0 182.4 0.737 0.628
热甘16117 Regan 16117 0.141 578.2 33.4 0.335 1.624 0.361 926.2 157.2 0.803 0.768
ROC16 0.025 1080.3 14.5 0.067 0.753 0.280 995.2 117.8 0.659 0.887
桂柳05136 Guiliu 05136 0.075 969.2 31.9 0.241 1.225 0.302 1296.4 165.0 0.756 0.702
ROC22 0.126 895.5 35.8 0.308 1.337 0.332 1225.3 169.8 0.768 0.691

图1

干旱胁迫下不同甘蔗品种叶片表征 不同小写字母表示P < 0.05水平差异显著。

表2

复水后不同甘蔗品种叶片表征

品种
Variety
平均叶长
Average leaf length (cm)
平均叶宽
Average leaf width (cm)
单株叶片数
Leaf number per plant
单株叶面积
Leaf area per plant (cm2)
热甘1 Regan 1 52.69±3.15de 3.47±0.38b 4.08±0.29fg 518.6±44.4f
热甘16239 Regan 16239 46.55±2.21f 2.51±0.14de 4.83±0.38def 409.5±4.1g
热甘11559 Regan 11559 48.01±3.43ef 2.95±0.17c 5.05±0.43bcde 657.2±51.1e
热甘11713 Regan 11713 61.07±2.84bc 2.73±0.13cde 4.67±0.14ef 668.6±35.7e
热甘1462 Regan 1462 42.74±2.16f 3.11±0.21bc 3.50±0.43g 376.1±83.6g
热甘1876 Regan 1876 60.97±3.26bc 3.38±0.22b 6.00±0.90bc 975.4±31.9d
热甘14291 Regan 14291 56.04±3.72cd 2.44±0.19e 5.08±0.38cde 558.0±39.1f
热甘1339 Regan 1339 57.60±2.54bcd 2.87±0.14cd 7.42±0.29a 1009.8±63.7d
热甘1997 Regan 1997 62.34±4.83b 4.00±0.22a 5.67±0.58bcd 1298.4±80.1a
热甘16117 Regan 16117 73.68±1.37a 2.99±0.14c 6.00±0.66bc 1039.7±71.7cd
ROC16 56.81±5.60bcd 2.92±0.29c 4.08±0.52fg 504.3±49.0f
桂柳05136 Guiliu 05136 74.30±2.37a 2.77±0.03cde 6.17±0.52b 1110.0±90.1bc
ROC22 69.94±2.00a 2.79±0.17cde 7.67±0.29a 1169.6±46.1b

表3

不同甘蔗品种复水后光合能力的恢复

品种Variety LAI JP (×104) PC
热甘1 Regan 1 0.519 19.526 10.13
热甘16239 Regan 16239 0.409 18.703 7.66
热甘11559 Regan 11559 0.657 17.646 11.60
热甘11713 Regan 11713 0.669 19.215 12.85
热甘1462 Regan 1462 0.376 24.094 9.06
热甘1876 Regan 1876 0.975 25.473 24.85
热甘14291 Regan 14291 0.558 26.239 14.64
热甘1339 Regan 1339 1.010 31.814 32.13
热甘1997 Regan 1997 1.298 29.585 38.41
热甘16117 Regan 16117 1.040 20.651 21.47
ROC16 0.504 18.393 9.27
桂柳05136 Guiliu 05136 1.110 31.251 34.69
ROC22 1.170 31.544 36.89
[1] 王硕, 贾潇倩, 何璐, 等. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44.
doi: 10.11924/j.issn.1000-6850.casb2021-1042
[2] Zhang X B, Lei L, Lai J S, et al. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 2018, 18(1):68.
doi: 10.1186/s12870-018-1281-x pmid: 29685101
[3] Grzesiak M T, Filek W, Hura T, et al. Leaf optical properties during and after drought stress in triticale and maize genotypes differing in drought tolerance. Acta Physiologiae Plantarum, 2010, 32(3):433-442.
[4] Hameed M, Batool S, Naz N, et al. Leaf structural modifications for drought tolerance in some differentially adapted ecotypes of blue panic (Panicum antidotale Retz.). Acta Physiologiae Plantarum, 2012, 34(4):1479-1491.
[5] Zhou L, Yan P, Xiao M. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35:213-222.
[6] 汪毅, 郭海林, 宗俊勤, 等. 干旱胁迫及复水条件下2种抗旱性不同结缕草种质的生长和生理响应. 江苏农业科学, 2022, 50(9):159-168.
[7] 庄晔, 葛嘉雪, 汪孝国, 等. 干旱胁迫后复水对烤烟生长及其生理特性的影响. 中国烟草学报, 2022, 28(4):48-57.
[8] 韦丽君. 甘蔗干旱胁迫的形态结构及生理机制研究. 长沙:湖南农业大学, 2014.
[9] Khonghintaisong J, Songsri P, Toomsan B, et al. Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech, 2018, 20(4):396-406.
[10] Tripathi P, Chandra A, Prakash J. Changes in physio‑biochemical attributes and dry matter accumulation vis a vis analysis of genes during drought and stress recovery at tillering stage of sugarcane. Acta Physiologiae Plantarum, 2022, 44:3.
[11] 潘方胤, 杨俊贤, 吴文龙, 等. 甘蔗育种中抗旱品系筛选及简易鉴定. 广东农业科学, 2012, 39(16):10-12.
[12] 卢文祥, 卢李威. 甘蔗新品种桂柳05136选育与种性研究报告. 甘蔗糖业, 2015(4):1-6.
[13] Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79(2):209-218.
doi: 10.1023/B:PRES.0000015391.99477.0d pmid: 16228395
[14] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis//Schulze E D,Caldwell M M. Ecophysiology of Photosynthesis,Berlin:Springer-Verlag,1994,100:49-70.
[15] Ritchie R J. Fitting light saturation curves measured using modulated fluorometry. Photosynthesis Research, 2008, 96(3):201-215.
doi: 10.1007/s11120-008-9300-7 pmid: 18415696
[16] An D S, Zhao B S, Liu Y, et al. Simulation of photosynthetic quantum efficiency and energy distribution analysis reveals differential drought response strategies in two (drought-resistant and -susceptible) sugarcane cultivars. Plants, 2023, 12(5):1042.
[17] 叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用. 植物生态学报, 2014, 38(11):1241-1249.
doi: 10.3724/SP.J.1258.2014.00119
[18] Niyogi K K, Truong T B. Evolution of flexible non- photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 2013, 16:307-314.
[19] Joachim L, Barbara S, Christa C, et al. Two mechanisms of recovery from photoinhibition in vivo: Reactivation of photosystem II related and unrelated to D1-protein turnover. Planta, 1994, 194:15-21.
[20] 安东升, 曹娟, 黄小华, 等. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用. 植物生态学报, 2015, 39(4):398-406.
doi: 10.17521/cjpe.2015.0039
[21] Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 2016, 129:379-395.
doi: 10.1007/s10265-016-0816-1 pmid: 27023791
[22] Hu W H, Yan X H, He Y, et al. 24-epibrassinolide alleviate drought-induced photoinhibition in Capsicum annuum via up- regulation of AOX pathway. Scientia Horticulture, 2019, 243:484-489.
[23] Nar H, Saglam A, Terzi R, et al. Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica, 2009, 47(3):429-436.
[24] 王倩, 顾施滟, 雷鹏程, 等. 普通白菜干旱胁迫下叶绿素含量和光合生理特性变化研究. 金陵科技学院学报, 2015, 31(4):76-78.
[25] Cal A J, Sanciangco M, Rebolledo M C, et al. Leaf morphology,rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell and Environment, 2019, 42 (5):1532-1544
[26] Turgut R, Kadioglu A. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa. Biologia Plantarum, 1998, 41(4):629-633.
[1] 欧克纬, 卢业飞, 农泽梅, 朱鹏锦, 庞新华, 宋奇琦, 吕平. 成熟期蔗叶离区细胞结构特点及PG含量变化分析[J]. 作物杂志, 2025, (1): 133–138
[2] 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132–139
[3] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[4] 杜杰, 冯宇, 夏清, 智慧, 王文霞. 外源油菜素内酯缓解谷子穗分化期干旱胁迫的机理研究[J]. 作物杂志, 2024, (4): 144–151
[5] 王璐, 邓杰, 张泽, 赵孟伟, 车欣洋, 王广义, 郭旭, 张海洋, 贺琳, 翁建峰, 徐晶宇. PEG胁迫下玉米苗期耐旱种质资源鉴定与评价[J]. 作物杂志, 2024, (4): 43–53
[6] 薛鑫雨, 詹文博, 陈新宜, 周瑞祥, 王永霞, 薛瑞丽, 李华, 汪月霞, 李艳. 灌浆期干旱胁迫对不同小麦品种的生理性状与根系生长的影响[J]. 作物杂志, 2024, (3): 192–200
[7] 卿晨, 刘正学, 李彦杰. 转录组测序分析干旱胁迫下复合微生物菌肥对玉米幼苗抗旱性的影响[J]. 作物杂志, 2024, (3): 32–39
[8] 张玉, 杨文静, 刘璇, 聂峰杰, 张丽, 石磊, 张国辉, 郭志乾, 巩檑. 马铃薯细胞壁蔗糖转化酶基因StCWIN1启动子克隆与表达及其在干旱胁迫下的作用分析[J]. 作物杂志, 2024, (2): 54–61
[9] 杨丽佩, 韩世健, 韦本辉, 李志刚, 黎瑞玲, 朱水芳, 肖纪铭, 李素丽. 有机肥与粉垄互作对甘蔗光合生理性及组织细胞结构的影响[J]. 作物杂志, 2024, (1): 148–156
[10] 周慧文, 闫海锋, 丘立杭, 范业赓, 周忠凤, 罗霆, 邓宇驰, 张小秋, 梁永检, 陈荣发, 吴建明. 无人机作业参数对伸长期甘蔗雾滴沉积分布的影响研究[J]. 作物杂志, 2023, (6): 121–126
[11] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[12] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[13] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
[14] 梁永检, 吴文志, 施泽升, 唐利球, 宋修鹏, 颜梅新, 郭强, 秦昌鲜, 何洪良, 张小秋. 基于无人机RGB遥感的甘蔗株高估测[J]. 作物杂志, 2023, (1): 226–232
[15] 苏利荣, 谭裕模, 秦芳, 李琴, 曾成城, 李忠义, 韦彩会, 董文斌, 梁俊, 何铁光. 绿豆/黑豆压青还田下减量施肥对宿根甘蔗产量和主要农艺性状的影响[J]. 作物杂志, 2022, (6): 105–110
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!