作物杂志,2023, 第4期: 202–209 doi: 10.16035/j.issn.1001-7283.2023.04.029

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响

姜珊(), 刘佳, 曹亮, 任春元, 金喜军, 张玉先()   

  1. 黑龙江八一农垦大学农学院,163319,黑龙江大庆
  • 收稿日期:2022-02-22 修回日期:2023-05-15 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 张玉先,主要从事大豆逆境栽培生理研究,E-mail:zyx_lxy@126.com
  • 作者简介:姜珊,研究方向为植物逆境生理,E-mail:15776561049@163.com
  • 基金资助:
    大庆地区小豆机械化高产关键技术研究与示范(zd-2021-81);黑龙江八一农垦大学研究生创新科研项目(YJS CX2021-Y44)

Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage

Jiang Shan(), Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2022-02-22 Revised:2023-05-15 Online:2023-08-15 Published:2023-08-15

摘要:

以红小豆品种珍珠红为供试材料,在可移动防雨棚中采用盆栽称重法于V2期模拟干旱胁迫,设置正常供水(对照,维持80%田间持水量)、干旱胁迫下喷施褪黑素处理(于控水当天叶面喷施100μmol/L褪黑素,逐步控制并维持50%田间持水量)和干旱胁迫处理(控水方式同上,喷施等量蒸馏水),研究了干旱胁迫下褪黑素对红小豆幼苗抗旱和光合生理、形态和产量的调控效应。结果表明,褪黑素可以显著提高干旱胁迫下红小豆叶片中抗氧化酶活性和渗透调节物质含量,降低活性氧和丙二醛含量,并提高株高、茎粗、叶面积和干物质积累。褪黑素可显著提高干旱胁迫下红小豆叶片光合色素含量、光合速率和叶绿素荧光参数,提高碳水化合物(蔗糖、果糖、可溶性糖)含量,可在一定程度上提高单株荚数和单株粒数,较干旱胁迫处理分别提高了2.18%和4.88%。综合分析认为,叶面喷施100μmol/L褪黑素可提高红小豆抗旱能力,缓解干旱胁迫对红小豆光合作用的抑制,促进红小豆幼苗生长,提高产量。

关键词: 红小豆, 干旱胁迫, 褪黑素, 光合作用

Abstract:

Adzuki bean cultivar Pearl Red was used as the test material in pot under portable rainproof shed, and normal water supply as control (80% field water holding), melatonin treatment under drought stress (100μmol/L melatonin was sprayed on the day of water control beginning, soil water content was gradually regulated and maintained 50% field capacity), drought stress treatment (equal amount of water was sprayed on the day of water control beginning, soil water content was gradually regulated and maintained 50% field capacity), to study effects of melatonin on drought resistance, photosynthetic physiology, morphology and yield of adzuki bean under drought stress. The results showed that melatonin could significantly increase antioxidant enzyme activity and infiltration regulators, decrease reactive oxygen species (ROS) and malonaldehyde contents, and increase plant height, stem diameter, leaf area and dry matter accumulation under drought stress. Melatonin significantly increased the content of photosynthetic pigment, photosynthetic rate, chlorophyll fluorescence parameters and carbohydrates (sucrose, fructose, soluble sugar) in adzuki bean leaves under drought stress. The application of exogenous melatonin increased the number of pods and grains per plant by 2.18% and 4.88%, respectively, compared with drought stress. It was concluded that 100μmol/L melatonin spraying on leaf surface could improve the drought resistance of adzuki bean, reduce the inhibition of photosynthesis of adzuki bean by drought stress, promote the growth of adzuki bean seedling and increase yield.

Key words: Adzuki bean, Drought stress, Melatonin, Photosynthesis

表1

干旱胁迫条件下褪黑素对形态指标的影响

喷施后天数
Days after spraying (d)
处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (mm2)
地上干重
Shoot dry weight (g)
地下干重
Root dry weight (g)
10 CK 13.07±0.38a 3.06±0.19a 6168.63±124.22a 0.86±0.04a 0.44±0.06a
D 10.93±0.41b 2.75±0.05a 4694.18±329.26a 0.75±0.03a 0.36±0.01a
D+M 11.90±0.45ab 2.90±0.07a 5706.56±401.30a 0.81±0.03a 0.40±0.04a
15 CK 15.83±1.03a 3.21±0.16a 7722.79±458.57a 1.55±0.08a 0.60±0.04a
D 12.80±0.18b 2.76±0.06a 5906.40±880.02b 0.93±0.10b 0.49±0.06b
D+M 13.77±1.29b 2.95±0.06a 6850.67±943.51ab 1.32±0.09ab 0.59±0.02ab
20 CK 20.30±0.44a 3.41±0.04b 8800.49±245.24a 2.67±0.06a 1.22±0.09a
D 15.97±0.18c 2.90±0.11ab 7092.89±598.23b 1.63±0.11b 0.85±0.05b
D+M 18.50±0.55b 3.01±0.14a 8070.84±120.23b 2.30±0.02ab 0.91±0.07b
25 CK 25.20±0.42a 3.50±0.02a 9156.13±593.47a 3.47±0.05a 1.76±0.11a
D 17.87±0.29c 3.05±0.04c 7789.10±962.75b 1.96±0.10b 0.96±0.10b
D+M 20.87±0.33b 3.26±0.06b 8922.64±612.18ab 2.58±0.13b 1.24±0.06b
30 CK 29.13±2.91a 3.78±0.13a 9329.80±519.87a 4.70±0.06a 2.07±0.11a
D 24.47±0.86b 3.20±0.18b 8038.34±485.77b 2.37±0.15b 1.21±0.07b
D+M 27.47±0.29a 3.58±0.14ab 9063.35±437.55ab 3.25±0.09b 1.38±0.11ab

图1

干旱胁迫下褪黑素对抗氧化酶活性的影响 不同小写字母表示差异显著(P<0.05),下同

图2

干旱胁迫下褪黑素对膜脂过氧化的影响

图3

干旱胁迫条件下褪黑素对红小豆光合参数的影响

图4

干旱胁迫条件下褪黑素对红小豆叶绿素荧光参数的影响

图5

干旱胁迫条件下褪黑素对红小豆光合色素含量的影响

图6

干旱胁迫下外源褪黑素对红小豆糖类物质含量的影响

表2

干旱胁迫条件下褪黑素对产量构成因素的影响

处理
Treatment
单株荚数
Pod number
per plant
单株粒数
Grain number
per plant
百粒重
100-seed
weight (g)
单株粒重
Grain weight
per plant (g)
CK 13.83±2.14a 48.00±3.74a 11.62±1.26a 5.28±1.42a
D 11.91±2.48ab 44.50±2.74b 11.06±0.12a 4.92±0.31a
D+M 12.17±1.17ab 46.67±3.14ab 11.10±0.18a 5.19±0.41a
[1] 唐偲雨, 张玲, 唐进, 等. 几种红小豆理化特性及淀粉性质研究. 中国农学通报, 2018, 34(6):143-148.
doi: 10.11924/j.issn.1000-6850.casb17050120
[2] 申晓慧. 黑龙江省红小豆生产现状. 中国种业, 2017(4):18-19.
[3] 代粮, 刘玉洁, 潘韬. 中国东北三省大豆虚拟水时空分异及其影响因素研究. 地球信息科学学报, 2018, 20(9):1274-1285.
doi: 10.12082/dqxxkx.2018.180212
[4] 罗海婧, 张永清, 石艳华, 等. 不同红小豆品种幼苗对干旱胁迫的生理响应. 植物科学学报, 2014, 32(5):493-501.
[5] 郭数进, 杨凯敏, 霍瑾, 等. 干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响. 应用生态学报, 2015, 26(5):1419- 1425.
[6] 邹京南. 外源褪黑素对干旱胁迫下大豆光合及生长的影响. 大庆:黑龙江八一农垦大学, 2019.
[7] Zuo Z, Sun L, Wang T, et al. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to Nano-ZnO stress. Molecules, 2017, 22(10):1727-1739.
doi: 10.3390/molecules22101727
[8] Baker N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59(1):89-113.
doi: 10.1146/arplant.2008.59.issue-1
[9] 李贺. 褪黑素对大豆苗期低温胁迫抗性的调控作用. 大庆:黑龙江八一农垦大学, 2021.
[10] 徐向东, 孙艳, 孙波, 等. 高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响. 应用生态学报, 2010, 21(5):1295-1300.
[11] 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响. 植物生理学报, 2021, 57(2):393-401.
[12] 胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度. 草业科学, 2018, 35(8):1965-1974.
[13] 李合生, 孙群, 赵世杰, 等. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000.
[14] 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2001.
[15] Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post- anthesis water-logging. Photosynthetica, 2008, 46(1):21-27.
doi: 10.1007/s11099-008-0005-0
[16] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate- specific in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5):867-880.
[17] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[18] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[19] 苍晶, 赵会杰. 植物生理学试验教程. 北京: 高等教育出版社, 2013.
[20] Chaitanya K K, Naithani S C. Role of superoxide, lipid peroxidation and superoxide dismutase inmembrane perturbation during loss of viability in seeds of Shorea robusta Gaertn.f.. New Phytologist, 1994, 126(4):623-627.
doi: 10.1111/nph.1994.126.issue-4
[21] Mukherjee S P, Choudhuri M A. Implications of water stress- induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 1983, 58(2):166-170.
doi: 10.1111/ppl.1983.58.issue-2
[22] Imaji A, Seiwa K. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species. Oecologia, 2010, 162(2):273-281.
doi: 10.1007/s00442-009-1453-3 pmid: 19763628
[23] 邢兴华. α-萘乙酸缓解大豆花期逐渐干旱胁迫的生理机制. 南京:南京农业大学, 2014
[24] 赵娜, 孙艳, 王德玉, 等. 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响. 植物生理学报, 2012, 48(6):557-564.
[25] 赵瑾, 白金, 潘青华, 等. 干旱胁迫下圆柏不同品种(系)叶绿素含量变化规律. 中国农学通报, 2007(3):236-239.
[26] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviourin two Malus species under drought stress. Journal of Experi-Mental Botany, 2015, 66(3):669-680.
[27] Bakhshandeh E, Gholamhossieni M. Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. Journal of Plant Growth Regulation, 2019, 38(4):1402-1411.
doi: 10.1007/s00344-019-09942-9
[28] Ye J, Wang S, Deng X, et al. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought- induced Photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum, 2016, 38(2):48-61.
doi: 10.1007/s11738-015-2045-y
[29] Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 2013, 54(3):292-302.
doi: 10.1111/jpi.12017 pmid: 23106234
[30] 吴雪霞, 朱宗文, 张爱冬, 等. 外源褪黑素对低温胁迫下茄子幼苗生长及其光合作用和抗氧化系统的影响. 西北植物学报, 2017, 37(12):2427-2434.
[31] 罗海婧. 不同品种红小豆对水分胁迫和复水的生理生态响应. 临汾:山西师范大学, 2015.
[32] 秦彬. 外源褪黑素对大豆苗期干旱的缓解效应. 大庆:黑龙江八一农垦大学, 2021.
[1] 杨建, 汤华成, 曹冬梅, 崔航, 娄雨豪, 王冀菲, 张东杰. 氟磺胺草醚胁迫红小豆幼苗代谢物及通路分析[J]. 作物杂志, 2023, (4): 230–236
[2] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[3] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
[4] 尹希龙, 石杨, 李王胜, 兴旺. 甜菜幼苗光合生理对干旱胁迫的响应[J]. 作物杂志, 2022, (6): 152–158
[5] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
[6] 李王胜, 王雪倩, 尹希龙, 石杨, 刘大丽, 谭文勃, 兴旺. 甜菜种质资源苗期耐旱性综合评价[J]. 作物杂志, 2022, (6): 54–60
[7] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[8] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[9] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[10] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[11] 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130–136
[12] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[13] 李安, 舒健虹, 刘晓霞, 蒙正兵, 王小利, 赵德刚. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021, (6): 217–223
[14] 陈忠诚, 金喜军, 李贺, 周伟鑫, 强斌斌, 刘佳, 张玉先. 外源褪黑素对红小豆生长、光合荧光特性及产量构成因素的影响[J]. 作物杂志, 2021, (6): 88–94
[15] 陈芳, 谷晓平, 于飞, 胡家敏, 左晋, 胡欣欣, 刘宇鹏, 胡锋. 贵州辣椒光合生理特性对干旱胁迫的响应[J]. 作物杂志, 2021, (5): 160–165
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!