作物杂志,2017, 第1期: 119–126 doi: 10.16035/j.issn.1001-7283.2017.01.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响

张紫薇1,庞春花1,张永清1,2,倪瑞军1,杨世芳1,王璐瑗3,刘丽琴1   

  1. 1山西师范大学生命科学学院,041004,山西临汾
    2山西师范大学地理科学学院,041004,山西临汾
    3山西师范大学现代文理学院,041004,山西临汾
  • 收稿日期:2016-10-13 修回日期:2016-12-15 出版日期:2017-02-15 发布日期:2018-08-26
  • 作者简介:张紫薇,在读硕士研究生,主要从事植物生理生态研究
  • 基金资助:
    山西省高等学校大学生创新创业训练项目(2015541);山西省化学优势重点学科建设项目(912019);山西师范大学科技开发与应用基金(YK1402)

Effects of Iso-osmotic NaCl and PEG Stress and Rewatering on Seed Germination and Seedling Growth of Quinoa

Zhang Ziwei1,Pang Chunhua1,Zhang Yongqing1,2,Ni Ruijun1,Yang Shifang1,Wang Luyuan3,Liu Liqin1   

  1. 1College of Life Sciences,Shanxi Normal University,Linfen 041004,Shanxi,China
    2College of Geographical Sciences,Shanxi Normal University,Linfen 041004,Shanxi,China
    3Modern College of Arts and Sciences,Shanxi Normal University,Linfen 041004,Shanxi,China
  • Received:2016-10-13 Revised:2016-12-15 Online:2017-02-15 Published:2018-08-26

摘要:

利用NaCl和PEG溶液模拟盐胁迫和水分胁迫,比较等渗NaCl和PEG胁迫下藜麦种子萌发、幼苗生长以及胁迫解除后幼苗生长状况的差异,探明渗透胁迫对藜麦种子萌发及幼苗生长的影响。研究结果表明:(1)在水势<-0.6MPa时,PEG对种子萌发的抑制作用大于NaCl,而在-2.3MPa NaCl与-1.0MPa PEG条件下种子均不能萌发;随着水势的降低,两种胁迫处理的种子初始萌发时间均逐渐推迟,并且在同一水势条件下,PEG胁迫的种子初始萌发时间较NaCl处理时间延长。(2)NaCl和PEG胁迫下幼苗根茎生长总体呈低浓度促进、高浓度抑制的趋势,但对不同生长指标影响存在差异。在≤-0.6MPa NaCl和≤-0.8MPa PEG条件下根长较对照显著降低,而在不高于-1.4MPa NaCl和-0.6MPa PEG时茎长显著降低;在不高于-1.4MPa NaCl和-0.6MPa PEG时根、茎、苗鲜重均显著低于对照;在低于-1.8MPa NaCl或-0.8MPa PEG时,藜麦幼苗不能存活。(3)NaCl处理,根、茎、苗长分别在不低于-1.0、-1.4和-1.0MPa时复水后可恢复至对照水平,甚至高于对照;根、茎、苗重分别在不低于-1.0、-1.8和-1.4MPa时复水后可恢复对照水平,甚至高于对照。前期不同浓度的PEG处理,复水后根茎长度与鲜重均能恢复至对照水平,甚至高于对照。(4)高盐环境降低幼苗根长分配,提高茎长分配,复水后根长与根重分配比例都有所提高,表现出一定的补偿性;干旱胁迫的加剧增加幼苗根长和根生物量的分配,但对幼苗自身根茎生物量分配比例影响不显著。说明藜麦具有很强的耐盐、耐旱及抗环境变化能力,适合在黄土高原引种。

关键词: 藜麦, 复水, 水盐胁迫, 种子萌发, 幼苗生长

Abstract:

The effects of iso-osmotic NaCl and PEG and re-watering on seed germination and growth of quinoa were examined to explore strategies of germination and seedling growth under drought and salt stress. Results showed: (1)When water potential was lower than -0.6 MPa, the inhibitory effect of PEG on seed germination was significantly higher than that of NaCl, and seeds could not germinate under -2.3MPa NaCl and -1.0MPa PEG, respectively. With the water potential decreasing, the initial germination time and germination period were prolonged, and then shortened regardless of NaCl and PEG, and germination time under PEG stress was longer than that of NaCl under the same water potential; (2)There were no seedlings appeared when the water potential decreased to -1.8MPa NaCl and -0.8MPa PEG, respectively, and seedling growth showed a trend of low promotion and high inhibition. Compared with CK , root length was significantly shortened when water potential was lower than -0.6MPa NaCl or -0.8MPa PEG, the shoot length and fresh weight of root, shoot and seedling were significantly decreased with water potential lower than -1.4MPa NaCl or -0.6MPa PEG; (3)The effects of rewatering on seedling growth were different under drought and salt stress. Under the NaCl treatments, the length of root, shoot and seedling could be restored to the control level when the water potential was higher than -1.0, -1.4 or -1.0MPa, The weight of root, shoot and seedling could be restored to the control level when the water potential was higher than -1.0, -1.8 or -1.4MPa, which even were longer and heavier than those of the control. Seedling length and fresh weight were individually restored to the control level or even were longer and heavier than those of the control under drought stress. (4)Under drought or salt stress, high plasticity was showed in biomass allocation. Biomass was little allocated to root under high salt, contrariwise in low salt, allocation ratio of root or shoot was enhanced after rewatering, indicating occurance of compensation effect. With the aggravation of drought, the allocation ratio of root length or biomass were increased with no significant effect. Our results suggest that quinoa is of strong salt- and drought-tolerance and the capability coping with environmental changes. And thus, it is a potential crop on Loess Plateau.

Key words: Quinoa, Rewatering, Water-salt stress, Seed germination, Seedling growth

图1

在不同水势NaCl、PEG处理下藜麦种子的累积萌发率 不同字母表示处理间差异达显著水平(P<0.05),下同"

图2

NaCl和PEG胁迫及复水对藜麦根长、茎长、苗长的影响"

图3

NaCl和PEG胁迫及复水对藜麦根茎长度比例分配的影响"

图4

NaCl和PEG胁迫及复水对藜麦根、茎、苗鲜重的影响"

图5

NaCl和PEG胁迫及复水对藜麦根茎鲜重比例分配的影响"

[1] 李建国, 濮励杰, 朱明 , 等. 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012,67(9):1233-1245.
[2] 王劲松, 李耀辉, 王润元 , 等. 我国气象干旱研究进展评述. 干旱气象, 2012,30(4):497-508.
[3] 郑青松, 刘兆普, 刘友良 , 等. 等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应. 植物生态学报, 2004,28(6):823-827.
[4] 渠晓霞, 黄振英 . 盐生植物种子萌发对环境的适应对策. 生态学报, 2005,25(9):2389-2398.
[5] Bohnert H J, Nelson D E, Jensen R G . Adaptations to environmental stresses. The Plant Cell, 1995,7(7):1099-1111.
doi: 10.1105/tpc.7.7.1099
[6] 高瑞如, 赵瑞华, 杨学军 , 等. 盐分和温度对盐节木幼苗早期生长的影响. 生态学报, 2009,29(10):5395-5405.
[7] 刘锁荣, 范文虎 . 促进山西藜麦种植规模化及产业链形成的建议. 山西农业科学, 2011,39(7):767-769.
[8] Jacobsen S E . The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003,19(1/2):167-177.
doi: 10.1081/FRI-120018883
[9] Jacobsen S E . The situation for quinoa and its production in southern Bolivia:from economic success to environmental disaster. Journal of Agronomy & Crop Science, 2011,197(5):390-399.
[10] Jacobsen S E, Mujica A, Jensen C R . The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003,19(1/2):99-109.
doi: 10.1081/FRI-120018872
[11] Hariadi Y, Marandon K, Tian Y , et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2011,62(1):185-193.
doi: 10.1093/jxb/erq257
[12] Koyro H W, Eisa S S . Effect of salinity on composition,viability and germination of seeds of Chenopodium quinoa Willd. Plant & Soil, 2008,302(1):79-90.
[13] Bhargava A, Shukla S, Ohri D . Chenopodium quinoa-an Indian perspective. Industrial Crops & Products, 2006,23(1):73-87.
[14] Li G T, Wang S A, Zhu F . Physicochemical properties of quinoa starch. Carbohydrate Polymers, 2015,137:328-338.
[15] 高爱丽, 陈毓荃 . 南美藜种皮凝集素的初步研究. 西北植物学报, 1996,16(6):113-115.
[16] 周海涛, 刘浩, 么杨 , 等. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014,15(1):222-227.
[17] Jacobsen S E, Jorgensen I, Stolen O . Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. Journal of Agricultural Science, 1994,122(1):47-52.
doi: 10.1017/S0021859600065783
[18] Jacobsen S E, Monteros C, Corcuera L J , et al. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 2007,26(4):471-475.
doi: 10.1016/j.eja.2007.01.006
[19] Mäkinen O E, Hager A S, Arendt E K . Localisation and development of proteolytic activities in quinoa (Chenopodium quinoa) seeds during germination and early seedling growth. Journal of Cereal Science, 2014,60(3):484-489.
doi: 10.1016/j.jcs.2014.08.009
[20] Ruiz-Carrasco K, Antognoni F, Coulibaly A K , et al. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth,physiological traits,and sodium transporter gene expression. Plant Physiology & Biochemistry, 2011,49(11):1333-1341.
[21] Adolf V I, Jacobsen S E, Shabala S . Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental & Experimental Botany, 2013,92(92):43-54.
[22] Jacobsen S E, Liu F L, Jensen C R . Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 2009,122(2):281-287.
doi: 10.1016/j.scienta.2009.05.019
[23] Fischer S, Wilckens R, Jara J , et al. Variation in antioxidant capacity of quinoa (Chenopodium quinoa Willd) subjected to drought stress. Industrial Crops & Products, 2013,46(4):341-349.
[24] Michel B E, Kaufmann M R . The osmotic potential of polyethylene glycol 6000. Plant Physiology, 1973,51(5):914-916.
doi: 10.1104/pp.51.5.914
[25] Tuteja N . Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 2007,428:419-438.
doi: 10.1016/S0076-6879(07)28024-3
[26] 刘金萍, 高奔, 李欣 , 等. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响. 生态学报, 2010,30(20):5485-5490.
[27] 耿宇鹏, 张文驹, 李博 , 等. 表型可塑性与外来植物的入侵能力. 生物多样性, 2004,12(4):447-455.
[28] Geng Y P, Pan X Y, Xu C Y , et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability,compared to its native congener. Acta Oecologica, 2006,30(3):380-385.
doi: 10.1016/j.actao.2006.07.002
[29] 段德玉, 刘小京, 冯凤莲 , 等. 盐分和水分胁迫对盐生植物灰绿藜种子萌发的影响. 植物资源与环境学报, 2004,13(1):7-11.
[30] 刘杰, 张美丽, 张义 , 等. 人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响. 作物学报, 2008,34(10):1818-1825.
doi: 10.3724/SP.J.1006.2008.01818
[31] 李海云, 赵可夫, 王秀峰 . 盐对盐生植物种子萌发的抑制. 山东农业大学学报(自然科学版), 2002,33(2):170-173.
[32] 王宗灵, 徐雨清, 王刚 . 沙区有限降水制约下一年生植物种子萌发与生存对策研究. 兰州大学学报(自然科学版), 1998,34(2):98-103.
[33] 李良, 王刚 . 种子萌发对策:理论与实验. 生态学报, 2003,23(6):1165-1174.
[34] 徐恒恒, 黎妮, 刘树君 , 等. 种子萌发及其调控的研究进展. 作物学报, 2014,40(7):1141-1156.
doi: 10.3724/SP.J.1006.2014.01141
[35] 赵丽英, 邓西平, 山仑 . 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004,15(3):523-526.
pmid: 15233112
[1] 罗秀秀,秦培友,杨修仕,梅丽,任贵兴. 藜麦苗生长过程中功能成分含量及抗氧化活性变化研究[J]. 作物杂志, 2018, (2): 123–128
[2] 王传旗,徐雅梅,梁莎,沈振西,余成群,张尚雄,张卫红,王小川,苗彦军. 西藏野生老芒麦种子萌发对温度和水分的响应[J]. 作物杂志, 2017, (6): 165–169
[3] 庞春花,杨世芳,张永清,华艳宏,贺笑,杨洋. 不同施磷水平下接种AM真菌对藜麦生长及产量构成因素的影响[J]. 作物杂志, 2017, (6): 131–139
[4] 王文浩,郑洪元,刘文俊,何丽芬,闫玉星. 外源NO对向日葵种子萌发和幼苗生长的影响[J]. 作物杂志, 2017, (4): 169–172
[5] 赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生. 碳纳米材料对植物生长发育的调节作用[J]. 作物杂志, 2017, (2): 7–13
[6] 孙阳,王燚,孟瑶,樊海潮,曲丹阳,李晶,魏湜,顾万荣. 外源5-氨基乙酰丙酸对低温胁迫下玉米幼苗生长及光合特性的影响[J]. 作物杂志, 2016, (5): 87–93
[7] 任永峰,王志敏,赵沛义,宋洁,栗艳芳,骆红,邓万云. 内蒙古阴山北麓区藜麦生态适应性研究[J]. 作物杂志, 2016, (2): 79–82
[8] 魏玉明,黄杰,顾娴,金茜,刘文瑜,杨发荣. 甘肃省藜麦产业现状及发展思路[J]. 作物杂志, 2016, (1): 12–15
[9] 倪瑞军, 张永清, 庞春花, 等. 黎麦幼苗对水氮耦合变化的可塑性响应[J]. 作物杂志, 2015, (6): 91–98
[10] 任贵兴, 杨修仕, 么杨. 中国黎麦产业现状[J]. 作物杂志, 2015, (5): 1–5
[11] 李丽杰, 顾万荣, 王泳超, 等. DCPTA浸种对寒地玉米种子萌发及根系生长的影响[J]. 作物杂志, 2015, (4): 152–156
[12] 郭媛, 邱财生, 龙松华, 等. 福胁迫对不同地区亚麻主栽品种种子萌发的影响[J]. 作物杂志, 2015, (4): 146–151
[13] 田鑫, 钟程, 李性苑, 等. 盐胁迫对薏苡种子萌发及幼苗生长的影响[J]. 作物杂志, 2015, (2): 140–143
[14] 吴文荣, 牛瑞明, 苑莹, 等. 外源NO对模拟干旱胁迫下亚麻种子发芽及幼苗生长的影响[J]. 作物杂志, 2015, (1): 143–147
[15] 赵俊香, 刘守伟, 吴凤芝. 盐碱胁迫对4种菊芋材料种子萌发及幼苗生长的影响[J]. 作物杂志, 2015, (1): 133–137
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .