作物杂志,2018, 第1期: 88–95 doi: 10.16035/j.issn.1001-7283.2018.01.014

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

开顶式气室对冬小麦的生长及产量的影响

曹嘉晨1,2,郑有飞1,3,赵辉3,徐静馨3   

  1. 1 南京信息工程大学江苏省大气环境与装备技术协同创新中心,210044,江苏南京
    2 南京信息工程大学环境科学与工程学院,210044,江苏南京
    3 南京信息工程大学大气物理学院,210044,江苏南京
  • 收稿日期:2017-08-22 修回日期:2017-12-20 出版日期:2018-02-20 发布日期:2018-08-24
  • 作者简介:曹嘉晨,硕士研究生,研究方向为环境气象
  • 基金资助:
    国家自然科学基金面上项目(41475108)

Influence of Open-Top Chamber on Growth and Yield of Winter Wheat

Cao Jiachen1,2,Zheng Youfei1,3,Zhao Hui3,Xu Jingxin3   

  1. 1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2 School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
    3 School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
  • Received:2017-08-22 Revised:2017-12-20 Online:2018-02-20 Published:2018-08-24

摘要:

开顶式气室(open-top chamber,OTC)通常是用来研究气候变化对农业生产的影响,为了探明开顶式气室内外冬小麦生长和产量的差异,分析了OTC内外气象因子(温度、相对湿度、饱和水汽压差和太阳辐射)的变化,测定了OTC内(CK组)和OTC外(AA组)冬小麦(扬麦13)在不同生育期的株高、叶面积、干物质、生长参数及产量指标。结果表明,OTC内温度、相对湿度和饱和水汽压差高于OTC外,而光合有效辐射低于OTC外。此外,OTC对冬小麦的株高、叶面积、生物量和产量都会造成不同程度的影响。与AA组相比,OTC对冬小麦的株高具有抑制作用,但是在生育后期对叶面积有促进作用。在冬小麦整个生育期,OTC对冬小麦叶干重、茎干重都表现出明显的负效应,但是对根干重具有促进作用。CK组穗的干物质累积低于AA组。OTC内的冬小麦穗重、单株粒数、单株粒重和千粒重都低于OTC外,导致OTC内冬小麦产量降低。

关键词: 开顶式气室(OTC), 冬小麦, 生长, 产量

Abstract:

In order to find out the difference in the growth and yield of winter wheat between inside and outside the open-top chamber (OTC), this paper analyzed the difference of meteorological factors inside and outside OTC and measured the plant height, leaf area, dry matter, growth parameter and yield index of winter wheat (Yangmai 13) inside OTC (CK) and outside OTC(AA) at different growth stages. The results showed that the temperature, relative humidity and vapor pressure in OTC were higher than those ouside of the chamber, and the photosynthetically active radiation was lower than that ouside of the chamber. In addition, OTC had different effects on plant height, leaf area, biomass and yield of winter wheat. Compared with AA group, OTC had an inhibitory effect on the plant height, but promoted the leaf area at the later stage during the growth period. OTC had a significant negative effect on dry weight and stem weight during the whole growth period, but it could promote the dry weight of roots. The dry matter accumulation of CK was lower than that of AA. The spike weight, grain number per plant,grain weight per plant and 1000-grain weight inside OTC were lower than those outside OTC, which resulted in the decrease of winter wheat yield inside OTC. In general, OTC had an inhibitory effect on winter wheat growth.

Key words: Open-top chamber, Winter wheat, Growth, Yield

图1

开顶式气室的设计"

图2

OTC内外气象因子的逐日变化"

图3

OTC内外气象因子的变化"

表1

各生育期OTC内外冬小麦株高的差异"

处理Treatment 拔节期Jointing 孕穗期Booting 抽穗期Heading 扬花1期1st blooming 扬花2期2nd blooming 灌浆期Filling 乳熟期Milking
AA 65.13 72.83 84.77 86.07 86.27 92.47 88.70
CK 63.60 69.87 82.10 85.13 86.13 90.60 84.40

表2

各生育期OTC内外冬小麦叶面积的差异"

处理Treatment 拔节期Jointing 孕穗期Booting 抽穗期Heading 扬花1期1st blooming 扬花2期2nd blooming 灌浆期Filling 乳熟期Milking
AA 25.182 32.310 33.826 35.067 36.117 32.7791 26.251
CK 21.761 28.893 30.831 30.937 33.793 33.241 29.4611

表3

各生育期OTC内外冬小麦各部分单株干重的差异"

器官
Organ
处理
Treatment
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
扬花1期
1st blooming
扬花2期
2nd blooming
灌浆期
Filling
乳熟期
Milking
叶 Leaf AA 0.340 0.470 0.513 0.543 0.433 0.403 0.343
CK 0.300 0.353 0.460 0.490 0.390 0.343 0.270
茎Stem AA 0.430 1.013 1.123 1.767 2.370 1.910 1.616
CK 0.380 0.506 0.927 1.457 1.487 1.397 1.250
根Root AA 0.123 0.150 0.070 1.433 1.187 0.110 0.146
CK 0.107 0.047 0.103 0.080 0.093 0.077 0.106
穗Spike AA 0.167 0.323 0.550 1.157 1.747 2.253
CK 0.110 0.316 0.447 0.873 1.323 1.893

表4

各生育期内OTC内外冬小麦不同器官干物质分配指数的比较"

器官
Organ
处理
Treatment
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
扬花1期
1st blooming
扬花2期
2nd blooming
灌浆期
Filling
乳熟期
Milking
根Root AA 0.138a 0.083a 0.034b 0.048a 0.044a 0.026a 0.033a
CK 0.136a 0.046b 0.057a 0.032b 0.033b 0.024a 0.030a
茎Stem AA 0.481a 0.553a 0.563a 0.583a 0.572a 0.458a 0.371a
CK 0.483a 0.498b 0.513b 0.589a 0.523b 0.446a 0.355a
叶Leaf AA 0.381a 0.261b 0.254a 0.183b 0.105b 0.097a 0.079a
CK 0.381a 0.348a 0.255a 0.198a 0.137a 0.109a 0.077a
穗Spike AA 0a 0.093b 0.159b 0.186a 0.279a 0.419a 0.517b
CK 0a 0.108a 0.175a 0.181b 0.307a 0.421a 0.538a

表5

OTC内外冬小麦产量的差异"

处理
Treatment
穗重(g)
Spike weight
穗粒数
Seeds per spike
有效穗数(个)
Number of productive spike
千粒重(g)
1000-seed weight
空秕率(%)
Empty-unfilled grain rate
产量(g/m2)
Yield
AA 3.74a 52.70a 506a 47.7a 0.98a 1 271.9a
CK 2.68a 49.24a 481b 39.3b 3.26b 930.8b

表6

OTC内外冬小麦气孔导度随生育期的变化"

处理
Treatment
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
扬花1期
1st blooming
扬花2期
2nd blooming
扬花3期
3rd blooming
灌浆期
Filling
乳熟期
Milking
AA 132.57 217.48 197.1 168.78 243.04 202.48 257.48 210.12
CK 110.45 184.22 158.63 149.18 165.64 161.88 227.68 183.36
[1] Heagle A S, Body D E, Heck W W . An open-top field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality, 1973,2(3):365-368.
doi: 10.2134/jeq1973.00472425000200030014x
[2] Mandl R H, Weinstein L H, Mccune D C , et al. A cylindrical,open-top chamber for the exposure of plants to air pollutants in the field. Journal of Environmental Quality, 1973,2(3):371-376.
doi: 10.2134/jeq1973.00472425000200030016x
[3] Riikonen J, Syrjälä L, Tulva I , et al. Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3. Environmental Pollution, 2008,156(2):536-543.
doi: 10.1016/j.envpol.2008.01.008
[4] Kanerva T, Regina K, Rämö K , et al. Fluxes of N2O,CH4 and CO2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years. Environmental Pollution, 2007,145(3):818-828.
doi: 10.1016/j.envpol.2006.03.055
[5] 王春乙, 白月明 . 臭氧和气溶胶浓度变化对农作物的影响研究. 北京: 气象出版社, 2007.
[6] 郑启伟, 王效科, 冯兆忠 , 等. 用旋转布气法开顶式气室研究臭氧对水稻生物量和产量的影响. 环境科学, 2007,1(1):170-175.
doi: 10.3321/j.issn:0250-3301.2007.01.031
[7] 赵天宏, 孙加伟, 赵艺欣 , 等. CO2和O3浓度升高及其复合作用对玉米(Zea mays L.)活性氧代谢及抗氧化酶活性的影响. 生态学报, 2008,28(8):3644-3653.
[8] 郑有飞, 吴荣军 . 地表臭氧变化特征及其作物响应. 北京: 气象出版社, 2012.
[9] 谭凯炎, 周广胜, 任三学 . 冬小麦叶片暗呼吸对CO2浓度和温度协同作用的响应. 科学通报, 2013(12):1158-1163.
[10] 张绪成, 于显枫, 马一凡 . 施氮和大气CO2浓度升高对小麦旗叶光合电子传递和分配的影响. 应用生态学报, 2011,22(3):673-680.
[11] Wajmde C, Wmw W, Hmlk H , et al. Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate. Field Crops Research, 2006,96(2/3):336-347.
doi: 10.1016/j.fcr.2005.08.002
[12] Centritto M . Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. Agriculture Ecosystems & Environment, 2005,106(2/3):233-242.
[13] 张金恩, 肖洪, 郑有飞 , 等. 开顶式气室内外冬小麦光合特性差异比较. 生态学报, 2015,35(21):6993-7002.
doi: 10.5846/stxb201402200299
[14] Heck W W, Cure W W, Rawlings J O , et al. Assessing impacts of ozone on agricultural crops:I Overview. Journal of the Air Pollution Control Association, 1984,34(7):729-735.
doi: 10.1080/00022470.1984.10465805
[15] Olszyk D M, Bytnerowicz A, Kats G , et al. Crop effects from air pollutants in air exclusion systems vs. field chambers. Journal of Environmental Quality, 1986,15(4):417-422.
doi: 10.2134/jeq1986.00472425001500040019x
[16] Hogsett W E, Tingey D T, Holman S R . A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth. Atmospheric Environment, 1985,19(7):1135-1145.
doi: 10.1016/0004-6981(85)90198-2
[17] Leadley P W, Drake B G . Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio, 1993,104/105(1):3-15.
doi: 10.1007/BF00048141
[18] Persson K, Danielsson H, Selldén G , et al. The effects of tropospheric ozone and elevated carbon dioxide on potato (Solanum tuberosum,L. cv. Bintje) growth and yield. Science of the Total Environment, 2003,310(1):191-201.
doi: 10.1016/S0048-9697(02)00639-3
[19] 王春乙, 白月明, 郑昌玲 , 等. CO2和O3浓度倍增对作物影响的研究进展. 气象学报, 2004,62(6):875-881.
doi: 10.11676/qxxb2004.084
[20] 耿春梅, 杨文, 殷宝辉 , 等. 田间原位开顶式臭氧熏蒸系统研究. 环境科学研究, 2011,24(6):593-600.
[21] Lawson T, Craigon J, Black C R , et al. Effects of elevated carbon dioxide and ozone on the growth and yield of potatoes (Solanum tuberosum) grown in open-top chambers. Environmental Pollution, 2001,111(3):479-491.
doi: 10.1016/S0269-7491(00)00080-4
[22] Fuhrer J . Effects of ozone on managed pasture:I. Effects of open-top chambers on microclimate,ozone flux,and plant growth. Environmental Pollution, 1994,86(3):297-305.
doi: 10.1016/0269-7491(94)90170-8
[23] Sanders G E, Clark A G, Colls J J . The influence of open-top chambers on the growth and development of field bean. New Phytologist, 1991,117(3):439-447.
doi: 10.1111/j.1469-8137.1991.tb00008.x
[24] Sanders G E, Turnbull N D, Clark A G , et al. The growth and development of Vicia faba L. in filtered and unfiltered open-top chambers. New Phytologist, 1991,116(1):67-78.
doi: 10.1111/j.1469-8137.1990.tb00511.x
[25] 王海珍, 韩路, 徐雅丽 , 等. 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析. 生态环境学报, 2015(5):741-748.
[26] 赵辉 . 臭氧胁迫下不同作物气孔吸收通量的对比及其时空分布. 南京:南京信息工程大学, 2016.
[27] Pleijel H, Danielsson H, Emberson L , et al. Ozone risk assessment for agricultural crops in Europe:Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmospheric Environment, 2007,41(14):3022-3040.
doi: 10.1016/j.atmosenv.2006.12.002
[28] Jones H G. Plants and Microclimate: A quantitative approach to environmental plant physiology. 2nd Edition. Cambridge: Cambridge University Press, 1992.
[29] Dennett M D, Elston J, Milford J R . The effect of temperature on the growth of individual leaves of Vicia faba L. in the field. Annals of Botany, 1979,43(2):197-208.
doi: 10.1093/oxfordjournals.aob.a085625
[30] Karamanos A J, Elston J, Wadsworth R M . Water stress and leaf growth of field beans (Vicia faba L. ) in the field:Water potentials and laminar expansion. Annals of Botany, 1982,49(6):815-826.
doi: 10.1093/oxfordjournals.aob.a086308
[31] Kasim K, Dennett M D . Effects of shading and plant density on leaf growth of Vicia faba. Annals of Applied Biology, 2010,109(3):627-638.
doi: 10.1111/j.1744-7348.1986.tb03220.x
[1] 赵 鑫 陈少锋 王 慧 刘三才 杨修仕 张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 27–32
[2] 王汉霞 单福华 田立平 马巧云 赵昌平 张风廷. 北部冬麦区冬小麦区试品种(系)的#br# 稳定性和适应性分析[J]. 作物杂志, 2018, (5): 40–44
[3] 张翔宇 李 海 梁海燕 张 知 宋晓强 郑敏娜. 不同种植行距与种植密度对黍子#br# 生长特性及子实产量的影响[J]. 作物杂志, 2018, (5): 91–96
[4] 吴荣华 庄克章 刘 鹏 张春艳. 鲁南地区夏玉米产量对气象因子的响应[J]. 作物杂志, 2018, (5): 104–109
[5] 宿飞飞 张静华 李 勇 刘尚武 刘振宇 王绍鹏 万书明 陈 曦 高云飞 胡林双 吕典秋. 不同灌溉方式对两个马铃薯品种#br# 生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[6] 张瑞栋 曹 雄 岳忠孝 梁晓红 刘 静 黄敏佳. 氮肥和密度对高粱产量及氮肥利用率的影响[J]. 作物杂志, 2018, (5): 110–115
[7] 安 霞 张海军 蒋方山 吕连杰 陈 军. 播期播量对不同穗型冬小麦群体及子粒产量的影响[J]. 作物杂志, 2018, (5): 132–136
[8] 高文俊 杨国义 高新中 玉 柱 许庆方 原向阳 孙耀武. 氮磷钾肥对青贮玉米产量和品质的影响[J]. 作物杂志, 2018, (5): 144–149
[9] 王小林 纪晓玲 张盼盼 张 雄 张 静. 黄土高原旱地谷子品种地上器官#br# 干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[10] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102–105
[11] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106–113
[12] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[13] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126–130
[14] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138–142
[15] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143–148
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .