作物杂志,2020, 第3期: 27–33 doi: 10.16035/j.issn.1001-7283.2020.03.005

• 专题综述 • 上一篇    下一篇

甜菜耐盐性形态学、生理生化特性及分子水平研究进展

张自强, 白晨, 张惠忠, 李晓东, 王良, 付增娟, 赵尚敏, 鄂圆圆, 张辉, 张必周   

  1. 内蒙古自治区农牧业科学院特色作物研究所,010031,内蒙古呼和浩特
  • 收稿日期:2019-10-17 修回日期:2020-02-28 出版日期:2020-06-15 发布日期:2020-06-10
  • 作者简介:张自强,主要从事甜菜分子育种工作,E-mail: hnzhangziqiang@163.com
  • 基金资助:
    农业农村部国家糖料产业技术体系项目(CARS-170104)

Research Progress on Morphology, Physiological and Biochemical Characteristics, and Molecular Level of Salt Stress in Sugar Beet

Zhang Ziqiang, Bai Chen, Zhang Huizhong, Li Xiaodong, Wang Liang, Fu Zengjuan, Zhao Shangmin, E Yuanyuan, Zhang Hui, Zhang Bizhou   

  1. Special Crop Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, Inner Mongolia, China
  • Received:2019-10-17 Revised:2020-02-28 Online:2020-06-15 Published:2020-06-10

摘要:

盐胁迫被认为是主要的非生物胁迫之一,对作物生长发育有着重要影响。甜菜具有一定的耐盐性,明确甜菜耐盐机理并加以利用,进而培育出耐盐性较强的甜菜新品种对高效利用盐渍化土壤具有重要意义。从盐胁迫对甜菜的形态学特征、生理生化特性及分子水平3个方面阐述了甜菜耐盐的研究进展,同时对当前耐盐研究存在的问题和今后可以进行的研究方向进行了探讨。

关键词: 甜菜, 盐胁迫, 形态学, 生理生化, 分子水平

Abstract:

Salt stress is considered as one of the main abiotic stresses, which has important impacts on crop growth and development. Sugar beet has a certain level of salt tolerance and it is of great significance to further examine the salt tolerance mechanism of sugar beet and to make use of it for development of new sugar beet varieties with strong salt tolerance for efficient cultivation in saline soil. In this paper, the research status of sugar beet's salt tolerance was discussed from three aspects: morphological characteristics, physiological and biochemical characteristics, and molecular level. At the same time, the existing problems and future research directions of salt tolerance were discussed.

Key words: Sugar beet, Salt stress, Morphology, Physiology and biochemistry, Molecular level

[1] Tilman D, Balzer C, Hill J , et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264.
[2] Roy S J, Tucker E J, Tester M . Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology, 2011,14(3):232-239.
doi: 10.1016/j.pbi.2011.03.002
[3] Botella M A, Rosado A, Bressan R A , et al. Plant Adaptive Responses to Salinity Stress//Plant Abiotic Stress. UK: Wiley-Blackwell, 2007: 37-70.
[4] Wang Y G, Piergiorgio S, Yu L H , et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Journal of Plant Research, 2017,130(6):1079-1093.
doi: 10.1007/s10265-017-0964-y
[5] 金明亮, 贾海龙 . 甜菜作为能源作物的优势及其发展前景. 中国糖料, 2011(1):58-59,66.
[6] 冯瑞军, 伍国强 . 甜菜耐盐性生理及其分子水平研究进展. 中国糖料, 2015,37(6):60-65.
[7] Shamim A B, Masum B, Neelima H , et al. Detection of salt tolerant hybrid maize as germination indices and seedling growth performance. Bulgarian Journal of Agricultural Science, 2017,23(5):793-798.
[8] Yang Y, Liu Q, Wang G X , et al. Germination,osmotic adjustment and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New Forests, 2010(39):231-243.
doi: 10.1007/s11056-009-9167-2
[9] 武俊英, 秦丽, 杨进 , 等. 盐胁迫对农大甜研6号甜菜幼苗生长和养分运移的研究. 作物杂志, 2017(3):75-80.
[10] Salwa A O, Mekki B B . Root yield and quality of sugar beet (Beta vulgaris L.) in response to ascorbic acid and saline irrigation water. American-Eurasian Journal of Agricultural and Environmental Sciences, 2008,4(4):504-513.
[11] Cornillon P, Palloix A . Influence of sodium chloride on the growth and mineral nutrition of pepper cultivars. Journal of Plant Nutrition, 1997,20(9):1085-1094.
doi: 10.1080/01904169709365320
[12] Apse M P, Aharon G S, Snedden W A , et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis . Science, 1999,285(5431):1256-1258.
doi: 10.1126/science.285.5431.1256
[13] Stephen J H, Simon G, Jonathan P L . Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. Journal of Experimental Botany, 2003,54(385):1269-1280.
doi: 10.1093/jxb/erg134
[14] Dadkhah A R . Response of root yield and quality of sugar beet (Beta vulgaris) to salt stress. Iran Agricultural Research, 2008,150(3):147-153.
[15] Mohamed D, Akira S, Stéphanie B , et al. Aminoacid changes in leaves and roots of tomato (Solanum lycopersicum) during salt stress. Acta Botanica Gallica, 2010,157(2):255-264.
doi: 10.1080/12538078.2010.10516203
[16] 於丽华 . NaCl胁迫下甜菜的生理响应及其耐盐机理研究. 沈阳:沈阳农业大学, 2015.
[17] 王激清, 刘社平, 白晓瑛 . 盐胁迫对不同品种甜菜种子萌发特性的影响. 江苏农业科学, 2015,43(3):96-98.
[18] Ihsan M I A, Susanne S, Ewald S . Effects of water salinity on germination and early seedling growth of untreated and pelleted sugar beet seeds (Beta vulgaris L.). Journal Für Kulturpflanzen, 2018,70(10):305-313.
[19] Monti A, Barbanti L, Venturi G . Photosynthesis on individual leaves of sugar beet (Beta vulgaris) during the ontogeny at variable water regimes. Annals of Applied Biology, 2007,151:155-165.
doi: 10.1111/aab.2007.151.issue-2
[20] Stella L, Maria V, Tim D P , et al. Water use efficiency, photosynthesis and plant growth of Chia (Salvia hispanica L.):a glasshouse experiment. Acta Physiologiae Plantarum, 2019,41(3):3-10.
doi: 10.1007/s11738-018-2795-4
[21] Jan A, Eva M A, James B , et al. Advances in Photosynthesis and Respiration-Photosynthesis. New York:Kluwer Academic Publishers, 2003.
[22] Mark W H, Irninig A M, Karen L M . Species and population variation to salinity stress in Panicum hemitomon,Spartina patens,and Spartina alterniflora:morphological and physiological constraints. Environmental and Experimental Botany, 2001,46(3):277-279.
[23] Sultana N, Itoh R, Ikeda T . Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 1994,42(3):211-220.
[24] Downton W J S, Grant W J R, Robinson S P . Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiology, 1985,78(1):85-88.
doi: 10.1104/pp.78.1.85
[25] Ashraf M . Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environmental and Experimental Botany, 2001,45(2):155-163.
[26] Herralde F D, Biel C, Savé R , et al. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 1998,139(1):9-17.
doi: 10.1016/S0168-9452(98)00174-5
[27] Sultana N, Ikeda T, Kashem M A . Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environmental and Experimental Botany, 2001,46(2):129-140.
doi: 10.1016/S0098-8472(01)00090-9
[28] Steduto P, Albrizio R, Giorio P , et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 2000,44(3):243-255.
doi: 10.1016/S0098-8472(00)00071-X
[29] Bethke P C, Drew M C, Bethke P C , et al. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiology, 1992,99(1):219-226.
[30] Dadkhah A, Griffiths H . Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of sugar beet plants under salt stress. Iran Agricultural Research, 2004,23(1):35-50.
[31] Alireza D . Effect of long term salt stress on gas exchange and leaf carbohydrate contents in two sugar beet (Beta vnlgaris L.) cultivars. Russian Agricultural Sciences, 2015,41(6):423-428.
doi: 10.3103/S1068367415060038
[32] Muhammad J, Shafiq R, Eui S R . Salinity effect on plant growth, PSⅡ photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Journal of Botany, 2007,39(3):753-760.
[33] Josefina H N, Berta D, Emilia L . Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002,163(3):507-514.
[34] Yamada N, Sakakibara S, Tsutsumi K , et al. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. Journal of Plant Physiology, 2011,168(14):1609-1616.
[35] 刘洋 . 不同甜菜品种对盐碱胁迫的生理生化相应. 哈尔滨:东北农业大学, 2014.
[36] 伍国强, 冯瑞军, 李善家 , 等. 盐处理对甜菜生长和渗透调节物质积累的影响. 草业学报, 2017,26(4):169-177.
[37] Yamada N, Worrawat P, Koji Y , et al. Preferential accumulation of betaine uncoupled to choline monooxygenase in youny leaves of sugar beet-importance of long-distance translocation of betaine under normal and salt-stressed conditions. Journal of Plant Physiology, 2009,166(18):2058-2070.
doi: 10.1016/j.jplph.2009.06.016
[38] Sazzad M H, Marcus P, Abdelaleim I E , et al. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 2017,68(21):5961-5976.
doi: 10.1093/jxb/erx388
[39] Sazzad M H, Abdelaleim I E, Marten M , et al. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany, 2017,68(5):1283-1298.
doi: 10.1093/jxb/erx019
[40] Kim J M, Sasaki T, Ueda M , et al. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Plant Science, 2015,6:114.
[41] Chen L T, Luo M, Wang Y Y , et al. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 2010,61(12):3345-3353.
doi: 10.1093/jxb/erq154
[42] Yuan L, Liu X, Luo M , et al. Involvement of histone modifications in plant abiotic stress responses. Journal of Integrative Plant Biology, 2013,55(10):892-901.
doi: 10.1111/jipb.12060
[43] Seher Y, Filiz O, Aybüke G , et al. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritime L. under salt stress. Plant Physiology and Biochemistry, 2016,100(1):37-46.
doi: 10.1016/j.plaphy.2015.12.019
[44] 於丽华, 韩晓日, 耿贵 , 等. NaCl胁迫下甜菜三种内源激素含量的动态变化. 东北农业大学学报, 2014,45(12):58-64.
[45] Cosgrove D J . Loosening of plant cell walls by expansions. Nature, 2000,407(6802):321-326.
doi: 10.1038/35030000
[46] Christian Z, Anja N, Sandra K , et al. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress . Journal of Plant Physiology, 2005,162(1):55-66.
doi: 10.1016/j.jplph.2004.03.010
[47] Abdul W, Stefan H, Britta P , et al. Hydrolytic and pumping activity of H+-ATPases from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress . Journal of Plant Physiology, 2010,167(9):725-731.
doi: 10.1016/j.jplph.2009.12.018
[48] Stefan S, Enrique D S, María B G . Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 2012,95(3):537-541.
[49] Fan P F, Chen D T, He Y A , et al. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. International Journal of Phytoremediation, 2016,18(11):1113-1121.
doi: 10.1080/15226514.2016.1183583
[50] Behzad R K, Hossein A A, Hassan E , et al. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 2019,138(7):160-170.
doi: 10.1016/j.apsoil.2019.02.022
[51] Dilfuza E, Stephan W, Li L , et al. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered, 2017,8(4):433-438.
doi: 10.1080/21655979.2016.1250983
[52] Etesami H, Beattie G A . Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 2018,9:148.
doi: 10.3389/fmicb.2018.00148
[53] Josef K, José A H, Fuensanta C . Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 2009,65(2):245-252.
doi: 10.1016/j.envexpbot.2008.09.008
[54] 郭剑, 李彩风, 刘磊 , 等. Na2CO3胁迫下甜菜幼苗根际土壤环境因子的变化及其相关性. 应用生态学报, 2016,27(3):904-910.
[55] Sakamoto A, Murata N . The role of glycine betaine in the protection of plants from stress:clues from transgenic plants. Plant, Cell and Environment, 2002,25(2):163-171.
doi: 10.1046/j.0016-8025.2001.00790.x
[56] David D S, Peter S S, Elizabeth A W . Phosphocholine synthesis in spinach:characterization of phosphoethanolamine N-methyltransferase. Physiologia Plantarum, 2000,108(10):286-294.
doi: 10.1034/j.1399-3054.2000.108003286.x
[57] Tomoki T, Tomoyuki O, Yuhei T , et al. Transcriptional response of glycinebetaine-related genes to salt stress and light in leaf beet. Plant Biotechnology, 2006,23(8):317-320.
doi: 10.5511/plantbiotechnology.23.317
[58] Rodolphe K, Ramon S, Roc R P . A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. Plant Molecular Biology, 2001,47(5):571-579.
doi: 10.1023/A:1012227913356
[59] Kunihide K, Koichi T, Vandna R , et al. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. Protoplasma, 2017,254(6):2305-2313.
doi: 10.1007/s00709-017-1127-7
[60] Cui J, Sun Z Y, Li J L , et al. Characterization of miRNA160/164 and their targets expression of beet (Beta vulgaris) seedlings under the salt tolerance. Plant Molecular Biology Reporter, 2018,36(5):790-799.
doi: 10.1007/s11105-018-1118-7
[61] Wang Y G, Zhan Y N, Wu C . et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Science, 2012,191(8):93-99.
[62] Yu B, Li J N, Koh J , et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. Journal of Proteomics, 2016,143(4):286-297.
doi: 10.1016/j.jprot.2016.04.011
[63] Wu C, Ma C Q, Pan Y , et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Journal of Plant Research, 2013,126(3):415-425.
doi: 10.1007/s10265-012-0532-4
[1] 赖弟利,范昱,朱红林,何凤,梁勇,徐欣然,文杰,王俊珍,严俊,程剑平. 燕麦耐盐性的生理生化指标网络分析[J]. 作物杂志, 2020, (2): 147–155
[2] 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168–171
[3] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
[4] 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 43–49
[5] 戈珍梅,刘治国,赵露,张晓宇,刘桂霞. 盐胁迫对膜荚黄芪种子萌发的影响[J]. 作物杂志, 2019, (6): 187–194
[6] 闫威,李国龙,李智,曹阳,张少英. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响[J]. 作物杂志, 2019, (4): 100–106
[7] 杨志会,张立峰,张继宗. 甜菜“南苗北植”的生产效应[J]. 作物杂志, 2019, (4): 154–158
[8] 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176–182
[9] 叶文斌,何玉鹏,王昱,王瀚,赵庆芳. 碱化橄榄油加工废弃液对玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2019, (3): 185–191
[10] 张自强,王良,白晨,张惠忠,李晓东,付增娟,赵尚敏,鄂圆圆,张辉,张必周. 104份甜菜种质资源主要农艺性状分析[J]. 作物杂志, 2019, (3): 29–36
[11] 闫晶,姬文秀,石贤吉,朱诗苗,李虎林. 镉胁迫对烟草种子萌发和烟苗生长发育的影响[J]. 作物杂志, 2019, (2): 142–149
[12] 方婧雯,邬燕,刘志华. 盐胁迫对罗布麻种子萌发及生理特性的影响[J]. 作物杂志, 2018, (4): 167–174
[13] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[14] 张凯伦,陈寿明,殷红,李斌,谢良文,贺帆. 外源一氧化氮对盐胁迫下烟草幼苗生理及抗氧化性的影响[J]. 作物杂志, 2018, (3): 123–128
[15] 刘建霞,张晓丹,王润梅,周凤,刘文英,刘支平. 6-BA浸种对盐胁迫下绿豆萌发及幼苗生理特性的影响[J]. 作物杂志, 2018, (1): 166–172
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!