作物杂志,2020, 第3期: 715 doi: 10.16035/j.issn.1001-7283.2020.03.002
段俊枝1, 齐学礼2, 冯丽丽1, 张会芳1, 孙岩1, 燕照玲1, 陈海燕1, 齐红志1, 樊文杰1, 杨翠苹1, 刘毓侠1, 任银玲1, 张甲源1, 李莹3(), 卓文飞1(
)
Duan Junzhi1, Qi Xueli2, Feng Lili1, Zhang Huifang1, Sun Yan1, Yan Zhaoling1, Chen Haiyan1, Qi Hongzhi1, Fan Wenjie1, Yang Cuiping1, Liu Yuxia1, Ren Yinling1, Zhang Jiayuan1, Li Ying3(), Zhuo Wenfei1(
)
摘要:
干旱严重影响小麦的生长发育及产量,小麦抗旱育种是保障小麦生产的重要措施,利用基因工程技术提高小麦抗旱性是优于传统育种的有效途径。抗旱基因主要包括调节基因(蛋白激酶、蛋白酶和转录因子基因)和功能基因。目前,已证实的可提高小麦抗旱性的基因主要为转录因子基因CBF/DREB1、MYB、NAC(NAM、ATAF1、ATAF2和CUC2)、HD-Zip和WRKY等和功能基因LEA蛋白基因、甜菜碱合成酶基因和海藻糖合成酶基因等。本文从转录因子基因和功能基因2个方面概述国内外利用基因工程技术提高小麦抗旱性的研究进展,并对目前存在的问题进行分析,以期为小麦抗旱遗传改良及育种提供参考。
[1] |
Reynolds M, Bonnett D, Chapman S C , et al. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2010,62(2):439-452.
doi: 10.1093/jxb/erq311 |
[2] |
Kajla M, Yadav V K, Khokhar J , et al. Increase in wheat production through management of abiotic stresses:A review. Journal of Applied and Natural Science, 2015,7(2):1070-1080.
doi: 10.31018/jans.v7i2.733 |
[3] |
Lee S, Choi H, Hwang I , et al. Functional roles of the pepper pathogen-induced bZIP transcription factor,CAbZIP1,in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006,224(5):1209-1225.
doi: 10.1007/s00425-006-0302-4 |
[4] |
Hadiarto T, Tran L . Progress studies of drought-responsive genes in rice. Plant Cell Reports, 2010,30(3):297-310.
doi: 10.1007/s00299-010-0956-z |
[5] |
Gaponenko A K, Shulga O A, Mishutkina Y B , et al. Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russian Journal of Genetics, 2018,54(1):27-35.
doi: 10.1134/S1022795418010039 |
[6] | Marco F, Bitrián M, Carrasco P , et al. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology and Biotechnology, 2015,11:579-609. |
[7] |
Pellegrineschi A, Reynolds M, Pacheco M , et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004,47(3):493-500.
doi: 10.1139/g03-140 |
[8] |
Wang J W, Yang F P, Chen X Q , et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 2006,33(5):468-476.
doi: 10.1016/S0379-4172(06)60074-7 |
[9] | 王军卫 . 外源脱水应答转录因子DREB1B和CBF1基因在转基因小麦中表达研究. 杨凌:西北农林科技大学, 2005: 42-70. |
[10] | 荣红颖, 张立全, 杨凤萍 , 等. DREB1B基因在转基因小麦后代的稳定表达. 分子植物育种, 2009,7(3):437-443. |
[11] | Gao S Q, Xu H J, Cheng X G , et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 2005,50(23):2714-2723. |
[12] |
Gao S Q, Chen M, Xia L Q , et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene,GhDREB,confers enhanced tolerance to drought,high salt,and freezing stresses in transgenic wheat. Plant Cell Reports, 2009,28(2):301-311.
doi: 10.1007/s00299-008-0623-9 |
[13] |
Morran S, Eini O, Pyvovarenko T , et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011,9(2):230-249.
doi: 10.1111/j.1467-7652.2010.00547.x |
[14] |
Rong W, Qi L, Wang A Y , et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014,12(4):468-479.
doi: 10.1111/pbi.12153 |
[15] |
Xing L P, Di Z, Yang W , et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science, 2017,8:1948.
doi: 10.3389/fpls.2017.01948 |
[16] |
Bi H H, Shi J X, Kovalchuk N , et al. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications,improved drought tolerance and no yield penalty under controlled growth conditions. Plant Cell and Environment, 2018,41(11):2549-2566.
doi: 10.1111/pce.v41.11 |
[17] | Saad A S I, Li X, Li H P , et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Science, 2013(203/204):33-40. |
[18] | Abdallat A M A, Ayad J Y, Elenein J M A , et al. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Moecular Breeding, 2014,33:401-414. |
[19] |
Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013 |
[20] |
Kang G Z, Ma H Z, Liu G Q , et al. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Molecular Genetics and Genomics, 2013,288(11):591-599.
doi: 10.1007/s00438-013-0773-5 |
[21] |
Yang Y F, Luang S, Harris J , et al. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnology Journal, 2018,16(6):1227-1240.
doi: 10.1111/pbi.2018.16.issue-6 |
[22] |
Li L, Zheng M H, Deng G B , et al. Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.). Molecular Breeding, 2016,36(3):1-10.
doi: 10.1007/s11032-015-0425-z |
[23] |
Gao H M, Wang Y F, Xu P , et al. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018,9:997.
doi: 10.3389/fpls.2018.00997 |
[24] |
Dubouzet J G, Sakuma Y, Ito Y , et al. OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression. The Plant Journal, 2003,33(4):751-763.
doi: 10.1046/j.1365-313X.2003.01661.x |
[25] |
Ito Y, Katsura K, Maruyama K , et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006,47(1):141-153.
doi: 10.1093/pcp/pci230 |
[26] |
Yang S, Tang X F, Ma N N , et al. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. Journal of Plant Physiology, 2011,168(15):1804-1812.
doi: 10.1016/j.jplph.2011.05.017 |
[27] |
Tang M J, Liu X F, Deng H P , et al. Over-expression of JcDREB,a putative AP2/EREBF domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas,enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Science, 2011,181(6):623-631.
doi: 10.1016/j.plantsci.2011.06.014 |
[28] |
Takuhara Y, Kobayashi M, Suzuki S . Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. Journal of Plant Physiology, 2011,168(9):967-975.
doi: 10.1016/j.jplph.2010.11.008 |
[29] |
Agarwal P, Agarwal P K, Joshi A J , et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010,37(2):1125-1135.
doi: 10.1007/s11033-009-9885-8 |
[30] |
Gutterson N, Reuber T L . Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004,7(4):465-471.
doi: 10.1016/j.pbi.2004.04.007 |
[31] |
Nakano T, Suzuki K, Fujimura T , et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[w] . Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783 |
[32] |
Sakuma Y, Liu Q, Dubouzet J G , et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290(3):998-1009.
doi: 10.1006/bbrc.2001.6299 |
[33] | Yamaguchi-shinozaki K, Shinozaki K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress. The Plant Cell, 1994,6(2):251-264. |
[34] |
Zhuang J, Chen J M, Yao Q H , et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 2011,38(2):745-753.
doi: 10.1007/s11033-010-0162-7 |
[35] |
Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x |
[36] |
Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221 |
[37] |
Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913 |
[38] |
Peng X J, Wang Q Q, Wang Y , et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice. Plant Cell Reports, 2019,38(12):1473-1484.
doi: 10.1007/s00299-019-02458-2 |
[39] |
He Z H, Li Z Y, Lu H J , et al. The NAC protein from Tamarix hispida,ThNAC7,confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants, 2019,8(7):221.
doi: 10.3390/plants8070221 |
[40] |
Yuan X, Wang H, Cai J T , et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 2019,19(1):278.
doi: 10.1186/s12870-019-1883-y |
[41] |
Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5):394-402.
doi: 10.1016/j.pmpp.2010.06.005 |
[42] |
Yong Y, Zhang Y, Lyu YA . Stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019,20(13):3225.
doi: 10.3390/ijms20133225 |
[43] |
Guan H, Liu X, Niu F , et al. ONAC72,a NAC-type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 2019,10:890.
doi: 10.3389/fpls.2019.00890 |
[44] |
Sivamani E, Bahieldin A, Wraith J M , et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 2000,155(1):1-9.
doi: 10.1016/S0168-9452(99)00247-2 |
[45] |
Bahieldin A, Mahfouz H T, Eissa H F , et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum, 2005,123(4):421-427.
doi: 10.1111/ppl.2005.123.issue-4 |
[46] |
Chauhan H, Khurana P . Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnology Journal, 2011,9(3):408-417.
doi: 10.1111/j.1467-7652.2010.00561.x |
[47] | 郭北海, 张艳敏, 李洪杰 , 等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000,42(3):279-283. |
[48] |
张艳敏, 郭北海, 蒋春志 , 等. 转甜菜碱醛脱氢酶(BADH)基因小麦的耐盐耐旱性. 华北农学报, 2003,18(1):29-32.
doi: 10.3321/j.issn:1000-7091.2003.01.009 |
[49] |
Wang G P, Zhen H, Li F , et al. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 2010,4(3):213-222.
doi: 10.1007/s11816-010-0139-y |
[50] |
He C M, Zhang W W, Gao Q , et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica, 2011,177(2):151-167.
doi: 10.1007/s10681-010-0263-3 |
[51] |
杜丽璞, 徐惠君, 叶兴国 , 等. 小麦转TPS基因植株的获得及其初步功能鉴定. 麦类作物学报, 2007,27(3):369-373.
doi: 10.7606/j.issn.1009-1041.2007.03.091 |
[52] | 李永春, 王潇, 陈焕丽 , 等. 转TPSP融合基因小麦植株的获得及抗旱性初步鉴定. 麦类作物学报, 2009,29(2):195-198. |
[53] | 李金花, 孙敏善, 张春艳 , 等. 转TPSP融合基因小麦的耐旱相关特性. 植物生理学报, 2012,48(1):81-84. |
[54] | Magwanga R O, Lu P, Kirungu J N , et al. Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. G3 Genes Genomes Genetics, 2018,8(8):2781-2803. |
[55] |
Wang M, Li P, Li C , et al. SiLEA14,a novel atypical LEA protein,confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014,14:290.
doi: 10.1186/s12870-014-0290-7 |
[56] |
Yang J, Zhao S, Zhao B , et al. Overexpression of TaLEA3 induces rapid stomatal closure under drought stress in Phellodendron amurense Rupr. Plant Science, 2018,277:100-109.
doi: 10.1016/j.plantsci.2018.09.022 |
[57] |
Zhang X, Lu S, Jiang C , et al. RcLEA,a late embryogenesis abundant protein gene isolated from Rosa chinensis,confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Molecular Biology, 2014,85(4):333-347.
doi: 10.1007/s11103-014-0192-y |
[58] |
Luo D, Hou X M, Zhang Y M , et al. CaDHN5,a dehydrin gene from pepper,plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 2019,20(8):1989.
doi: 10.3390/ijms20081989 |
[59] |
Vendruscolo E C G, Schuster I, Pileggi M , et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007,164(10):1367-1376.
doi: 10.1016/j.jplph.2007.05.001 |
[60] |
Abebe T, Guenzi A C, Martin B , et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 2003,131(4):1748-1755.
doi: 10.1104/pp.102.003616 |
[61] | 刘伟华, 赵秀振, 梁虹 , 等. 枯草杆菌果聚糖蔗糖酶基因转化小麦的研究. 中国农业科学, 2006,39(2):231-236. |
[62] |
胡梦芸, 李辉, 庞建周 , 等. 过量表达蔗糖转运蛋白基因增强转基因小麦的耐旱性. 中国农业科学, 2015,48(8):1473-1483.
doi: 10.3864/j.issn.0578-1752.2015.08.02 |
[63] |
Zang X S, Geng X L, Wang F , et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 2017,17(1):14.
doi: 10.1186/s12870-016-0958-2 |
[64] | Ben-saad R, Ben-ramdhan W, Zouari N , et al. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Moecular Breeding, 2012,30:521-533. |
[65] |
Yu T F, Xu Z S, Guo J K , et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017,7:44050.
doi: 10.1038/srep44050 |
[1] | 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102108 |
[2] | 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142148 |
[3] | 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154160 |
[4] | 刘勇, 刘易科, 朱展望, 田进东, 陈泠, 邹娟, 赵发文, 关健, 高春保, 佟汉文. 小麦有机生产现状与分析——以湖北省南漳县稻茬麦有机产品认证为例[J]. 作物杂志, 2020, (3): 1621 |
[5] | 朱英杰, 刘富启, 张燕, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才. 不同土壤条件下氮肥处理对小麦产量及品质的影响[J]. 作物杂志, 2020, (3): 184190 |
[6] | 周子超, 侯建华, 甄子龙, 石慧敏. 152份向日葵重组自交系苗期抗旱性的鉴定与评价[J]. 作物杂志, 2020, (3): 4752 |
[7] | 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J]. 作物杂志, 2020, (3): 6065 |
[8] | 陈丹, 普健萍, 伍少云, 周国雁, 隆文杰, 武晓阳, 蔡青. 云南小麦变种分类与地理分布研究[J]. 作物杂志, 2020, (3): 8591 |
[9] | 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168171 |
[10] | 陈天鑫,王艳杰,张燕,常旭虹,陶志强,王德梅,杨玉双,朱英杰,刘阿康,石书兵,赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 8896 |
[11] | 张博,高甜甜,程宏波,李瑞,柴雨葳,李亚伟,柴守玺. 覆盖对旱地冬小麦植株和旗叶水分含量及产量的影响[J]. 作物杂志, 2020, (2): 97104 |
[12] | 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 18 |
[13] | 黄寅玲,雷忠顺,郑涛,索新霞. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020, (1): 130135 |
[14] | 张永强,齐晓晓,张璐,董慧云,陈传信,赛力汗·赛,薛丽华,陈兴武,雷钧杰. 氮肥运筹对滴灌冬小麦叶片光合特性及产量的影响[J]. 作物杂志, 2020, (1): 141145 |
[15] | 杨文彪,张慧芋,李莹,祁泽伟,刘凯凯,高志强,孙敏,薛建福. 山西省冬小麦生产潜力时空分布与气象因子分析[J]. 作物杂志, 2020, (1): 161167 |
|