作物杂志,2020, 第3期: 92–101 doi: 10.16035/j.issn.1001-7283.2020.03.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同水稻品种幼苗期耐盐性评价

张治振1,2, 李稳2, 周起先3, 孙伟2, 郑崇珂2(), 谢先芝2()   

  1. 1山东师范大学生命科学学院,250014,山东济南
    2山东省水稻研究所,250100,山东济南
    3山东省农业科学院,250100,山东济南
  • 收稿日期:2019-11-09 修回日期:2020-02-29 出版日期:2020-06-15 发布日期:2020-06-10
  • 通讯作者: 郑崇珂,谢先芝 E-mail:zhengck1983@163.com;xzhxie2010@163.com
  • 作者简介:张治振,主要从事水稻抗逆分子生物学方面的研究,E-mail: zhangzz20190601@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0100600);山东省农业良种工程项目(2019LZGC003);山东省重点研发计划项目(2019GNC106132);山东省农业科学院农业科技创新工程(CXGC2019G02)

Salt Tolerance Evaluation of Different Rice Varieties at Seedling Stage

Zhang Zhizhen1,2, Li Wen2, Zhou Qixian3, Sun Wei2, Zheng Chongke2(), Xie Xianzhi2()   

  1. 1College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
    2Shandong Rice Research Institute, Jinan 250100, Shandong, China
    3Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2019-11-09 Revised:2020-02-29 Online:2020-06-15 Published:2020-06-10
  • Contact: Chongke Zheng,Xianzhi Xie E-mail:zhengck1983@163.com;xzhxie2010@163.com

摘要:

水稻是盐碱地改良利用的重要作物。水稻幼苗期对盐胁迫敏感,筛选幼苗期高耐盐水稻品种是利用水稻进行盐碱地改良的关键。通过分析收集的15个粳稻品种在盐胁迫下的形态和生理特性,综合评价不同水稻品种幼苗期的耐盐性。形态分析结果表明: 150mmol/L NaCl处理下,所有试验材料的生长均受到抑制,出现植株变矮、根长变短和叶片枯萎等表型,其中盐胁迫对宁粳44、南粳46和盐丰47(对照)生长抑制相对最弱,死叶率最低;200mmol/L NaCl处理下,宁粳44、南粳46和盐丰47的存活率最高。耐盐指数结果表明,盐丰47的综合性状最好,其次是南粳46和宁粳44。生理特性结果表明: 150mmol/L NaCl处理下所有试验材料的超氧化物歧化酶(SOD)活性及丙二醛、脯氨酸和可溶性糖含量均有所增加,其中南粳46的SOD活性较其他参试材料高;南粳46、盐丰47和宁粳44的丙二醛含量增加幅度较小,脯氨酸及可溶性糖含量增加幅度大于其他参试材料。推测南粳46、盐丰47和宁粳44具有较强的过氧化物清除能力和渗透调节能力,这可能是其幼苗期具有较强盐胁迫耐性的生理机制。综上所述,筛选到的幼苗期耐盐性较强的水稻品种为南粳46和宁粳44。

关键词: 水稻, 耐盐性, 幼苗期, 生理特性

Abstract:

Rice is one of important crops for the improvement of saline-alkali soil. Seedling stage of rice is the most sensitive stage to salt stress. Therefore, screening of high salt-tolerance rice varieties at seedling stage is critical for the improvement of cultivation of saline-alkali soil. In this study, the morphological and physiological characteristics of 15 rice varieties under salt stress were analyzed to evaluate their salt-tolerance ability at seedling stage. Morphological analysis showed that the growth was repressed by 150mmol/L NaCl in all test materials, exhibiting reduced plant height, shortened root length and wilting leaves. Among them, the repressive effects of salt stress in Ningjing 44, Nanjing 46, and Yanfeng 47 (control) were relatively weak. Ningjing 44, Nanjing 46 and Yanfeng 47 had the highest survival rates under 200mmol/L NaCl treatment. Salt-tolerance index indicated that Yanfeng 47 ranked the highest, followed by Nanjing 46 and Ningjing 44. Analyses of physiological characteristics related to salt stress responses showed that superoxide dismutase (SOD) activity and contents of malondialdehyde (MDA), proline, and soluble sugar in all examined materials increased under salt stress. However, SOD activity of Nanjing 46 was higher than that in the other materials. Increase of MDA content in Nanjing 46, Yanfeng 47 and Ningjing 44 was relatively less than that in other materials under salt stress. The contents of proline and soluble sugar in Nanjing 46, Ningjing 44, and Yanfeng 47 increased higher than those in other materials examined. Therefore, it can be inferred that Nanjing 46, Yanfeng 47 and Ningjing 44 have strong peroxide scavenging capacity and osmotic adjustment ability, which probably contribute to high salt-tolerance at seedling stage. In conclusion, Nanjing 46 and Ningjing 44 were strong salt-tolerance varieties at seedling stage.

Key words: Rice, Salt-tolerance, Seedling stage, Physiological characteristic

表1

平均死叶百分率分级标准(国际水稻研究所)"

级别
Grade
平均死叶百分率(%)
Percentage of dead leaves
耐盐/碱性
Salt or alkaline tolerance
1 0.0~20.0 极强
3 20.1~40.0
5 40.1~60.0
7 60.1~80.0
9 80.1~100.0 极弱

图1

9个水稻品种盐处理(200mmol/L NaCl)前后表型"

图2

盐胁迫处理(200mmol/L NaCl)对水稻品种存活率的影响 以盐丰47为对照作差异显著性分析。“*”表示P<0.05,“**”表示P<0.01,下同"

图3

盐胁迫处理(150mmol/L NaCl)对水稻品种死叶率的影响"

图4

150mmol/L NaCl胁迫处理6d对水稻不同性状的影响"

表2

对水稻6个性状进行的主成分分析结果"

项目Item 主成分1
Principal
component 1
主成分2
Principal
component 2
主成分3
Principal
component 3
主成分4
Principal
component 4
主成分5
Principal
component 5
主成分6
Principal
component 6
特征值Eigenvalue 3.12 1.14 0.81 0.64 0.22 0.06
贡献率Variance percent (%) 52.01 19.07 13.53 10.68 3.66 1.05
累积贡献率Cumulative variance percent (%) 52.01 71.08 84.61 95.29 98.95 100.00

表3

不同指标在主成分中的系数及在耐盐指数中的权重值"

性状Trait 主成分1 Principal component 1 主成分2 Principal component 2 权重Weight 权重(归一化)Weight (Normalized)
苗高Seedling height 0.51 0.70 0.56 0.17
根长Root length 0.54 0.66 0.57 0.18
根系鲜重Root fresh weight 0.93 -0.21 0.63 0.19
根系干重Root dry weight 0.79 -0.26 0.51 0.16
茎叶鲜重Shoot fresh weight 0.67 -0.17 0.44 0.14
茎叶干重Shoot dry weight 0.79 -0.26 0.51 0.16

表4

参试材料的耐盐指数"

排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
排序
Rank
品种
Variety
耐盐指数
Salt-tolerance index
1 盐丰47 Yanfeng 47 0.93 6 临稻11 Lindao 11 0.75 11 圣稻735 Shengdao 735 0.68
2 南粳46 Nanjing 46 0.85 7 港源8号 Gangyuan 8 0.74 12 香粳9407 Xiangjing 9407 0.67
3 宁粳44 Ningjing 44 0.80 8 宁粳53 Ningjing 53 0.74 13 宁粳51 Ningjing 51 0.66
4 宁粳45 Ningjing 45 0.75 9 新稻18 Xindao 18 0.73 14 淮稻5 Huaidao 5 0.65
5 盐粳44 Yanjing 44 0.75 10 松粳378 Songjing 378 0.68 15 津源45 Jinyuan 45 0.62

图5

NaCl胁迫对水稻品种不同生理指标的影响 “*”和“**”分别表示差异显著(P<0.05)和极显著(P<0.01),下同"

图6

NaCl胁迫对相对耐盐材料和相对盐敏感材料不同生理指标的影响 SS表示相对盐敏感材料,ST表示相对耐盐材料"

[1] Hasegawa P M, Bressan R A, Zhu J K , et al. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology and Plant Molecular Biology, 2000,51(51):463-499.
doi: 10.1146/annurev.arplant.51.1.463
[2] 杨佳佳, 姜琦刚, 赵静 , 等. 基于环境减灾卫星高光谱数据的盐碱地等级划分. 农业工程学报, 2011,27(10):118-124.
[3] Lutts S, Kinet J M, Bouharmont J . Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 1995,46(293):1843-1852.
doi: 10.1093/jxb/46.12.1843
[4] 李洪亮 . 盐胁迫对水稻生育时期和农艺性状的影响. 黑龙江农业科学, 2010(11):18-20.
[5] 孙伟, 郑崇珂, 解丽霞 , 等. 水稻对盐胁迫的生理和分子反应研究进展. 山东农业科学, 2016,48(4):148-153.
[6] 李仕勇 . 东营加快生态农业发展助推黄河三角洲新飞跃. 经济导报, 2010(45):40-41.
[7] 祁栋灵, 韩龙植, 张三元 , 等. 水稻耐盐/碱性鉴定评价方法. 植物遗传资源学报, 2005,6(2):226-231.
[8] Yoshida S, Forno D A, Cock J H , et al. Laboratory manual for physiological studies of rice. Los Banos, the Philippines:The International Rice Research Institute, 1976: 61-65.
[9] 潘晓飚, 段敏, 谢留杰 , 等. 水稻籼型不育系萌发期和幼苗期的耐盐性评价. 中国农学通报, 2015,31(30):1-9.
[10] 韩小孩, 张耀辉, 孙福军 , 等. 基于主成分分析的指标权重确定方法. 四川兵工学报, 2012,33(10):124-126.
[11] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006: 221-224.
[12] 张志良, 瞿伟菁 . 植物生理学实验指导. 北京: 高等教育出版社, 2006: 274-277.
[13] 丁灿, 杨清辉, 李富生 , 等. 低温对割手密和斑茅游离脯氨酸含量的影响. 安徽农业科学, 2006,34(5):846-849.
[14] 焦洁 . 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量. 农业工程技术, 2016(17):33-34.
[15] Lê S, Josse J, Husson F . FactoMineR:An R package for multivariate analysis. Journal of Statistical Software, 2008,25(1):1-18.
[16] 潘世驹, 李红宇, 姜玉伟 , 等. 寒地水稻幼苗期耐盐资源筛选. 南方农业科学, 2015,46(10):1775-1779.
[17] 王奉斌, 张燕红, 袁杰 , 等. 新疆耐盐水稻种质资源的筛选. 新疆农业科学, 2009,46(3):501-505.
[18] 袁杰, 王学强, 张燕红 , 等. 水稻种质资源苗期耐盐性鉴定. 分子植物育种, 2019:1-9. http://kns.cnki.net/kcms/detail/46.1068.S.20191030.1513.012.html.
[19] 金美芳, 何菊芬 . NaCl胁迫对水稻(Oryza sativa)种子萌发和幼苗生长的影响. 福建师大福清分校学报, 2010(2):6-10.
[20] Per T S, Khan N A, Reddy P S , et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance:Phytohormones,mineral nutrients and transgenics. Plant Physiology and Biochemistry, 2017,115:126-140.
doi: 10.1016/j.plaphy.2017.03.018
[21] Nounjan N, Nghia P T, Theerakulpisut P . Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology, 2012,169(6):596-604.
doi: 10.1016/j.jplph.2012.01.004
[22] Rasool S, Ahmad A, Siddiqi T O , et al. Changes in growth,lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologiae Plantarum, 2013,35(4):1039-1050.
doi: 10.1007/s11738-012-1142-4
[23] Medeiros C D, José R C, Ferreira Neto , et al. Photosynthesis,antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiologiae Plantarum, 2014,36(2):447-459.
doi: 10.1007/s11738-013-1425-4
[24] Xie Z X, Duan L S, Tian X L , et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 2008,165(4):375-384.
doi: 10.1016/j.jplph.2007.06.001
[1] 赖日芳, 郑阿香, 罗昊文, 吴窕艳, 赵旭泽, 何隆鑫, 王连祥, 唐湘如. 不同育秧方式对机插香稻秧苗素质及生理特性的影响[J]. 作物杂志, 2020, (3): 137–141
[2] 宋秋来, 王麒, 冯延江, 孙羽, 曾宪楠, 来永才. 寒地水旱轮作及秸秆还田对土壤相关酶活性的影响[J]. 作物杂志, 2020, (3): 149–153
[3] 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 1–8
[4] 轧宗杰,卢树昌,侯琨. 水稻旱直播栽培发展现状、问题及应用前景[J]. 作物杂志, 2020, (2): 9–15
[5] 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 1–8
[6] 吕军,姜秀英,解文孝,刘军,蒋洪波,沈枫,韩勇. 辽宁省不同熟期水稻品质性状分析[J]. 作物杂志, 2020, (1): 17–21
[7] 李波,宫亮,曲航,金丹丹,孙文涛. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响[J]. 作物杂志, 2020, (1): 173–178
[8] 田孟祥,宫彦龙,张时龙,何友勋,雷月,余本勋,余莉,李佳丽,张大双,叶永印. 水稻苗期耐低温基因COLD1新功能标记的设计与验证[J]. 作物杂志, 2020, (1): 55–60
[9] 陈庭木,孙志广,邢运高,方兆伟,王宝祥,刘艳,徐大勇. 水稻可消化蛋白质含量测定方法研究及资源筛选[J]. 作物杂志, 2020, (1): 61–66
[10] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
[11] 王鹤璎,郭晓红,张钦明,马艳,李猛,姜红芳,胡月,兰宇辰,徐令旗,郭洪涛,吕艳东. 水条播对寒地水稻农艺性状和产量构成因素的影响[J]. 作物杂志, 2020, (1): 81–88
[12] 赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响[J]. 作物杂志, 2020, (1): 98–102
[13] 石吕,薛亚光,魏亚凤,李波,石晓旭,刘建. 不同氮素粒肥水平下精米蒸煮食味品质变化及其与矿质元素含量相关性分析[J]. 作物杂志, 2019, (6): 57–65
[14] 李虎,陈传华,刘广林,吴子帅,黄秋要,罗群昌. 种植密度和施氮量对桂育9号农艺性状及产量的影响[J]. 作物杂志, 2019, (6): 99–103
[15] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15–21
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!