作物杂志,2021, 第5期: 20–27 doi: 10.16035/j.issn.1001-7283.2021.05.004

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

12个主产区历史小麦品种抗叶锈病基因分析

段振盈1(), 徐新玉1, 李星2, 李在峰2, 马骏3, 姚占军1()   

  1. 1河北农业大学农学院/华北作物种质资源研究与利用教育部重点实验室,071001,河北保定
    2河北农业大学植物保护学院/河北省病虫害生物防治工程技术研究中心,071001,河北保定
    3中国农业大学农学院,100193,北京
  • 收稿日期:2020-10-18 修回日期:2021-04-13 出版日期:2021-10-15 发布日期:2021-10-14
  • 通讯作者: 姚占军
  • 作者简介:段振盈,主要从事小麦抗病遗传育种研究,E-mail: dzy950910@163.com
  • 基金资助:
    “十三五”国家重点研发计划(2018YFD0300501)

Leaf Rust Resistance Gene Analysis of 12 Wheat Cultivars in Main Producing Areas

Duan Zhenying1(), Xu Xinyu1, Li Xing2, Li Zaifeng2, Ma Jun3, Yao Zhanjun1()   

  1. 1College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding 071001, Hebei, China
    2College of Plant Protection, Hebei Agricultural University/Control Center of Plant Disease and Plant Pests of Hebei Province, Baoding 071001, Hebei, China
    3College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-10-18 Revised:2021-04-13 Online:2021-10-15 Published:2021-10-14
  • Contact: Yao Zhanjun

摘要:

近年来,小麦叶锈病发生有加重趋势,培育抗病品种是减轻小麦叶锈病危害的环保有效途径。用12个小麦品种及35个含已知抗叶锈病基因的载体品系在苗期接种19个不同毒性的叶锈菌生理小种,通过基因推导和系谱分析发掘待测品种中的抗叶锈病基因,并通过分子标记检测进一步验证;在田间接种强毒性混合生理小种,进行成株期病情严重度与普遍率调查,筛选慢锈性品种。结果表明,在石新828、百农3217、济南2号、泰山1号、石特14、晋麦2148、烟农15、小偃6号、温麦6号共9个品种中检测到Lr1Lr26Lr34Lr37Lr46共5个抗叶锈病基因,其中部分品种中发现多个抗性基因。成株期筛选出百农3217、平阳27、济南2号、泰山1号、石特14、晋麦2148、碧蚂4号、烟农15、小偃6号、温麦6号共10个慢叶锈性品种,其中碧蚂4号和小偃6号等品种是我国小麦育种的骨干亲本,探究这些品种中的抗病基因对培育小麦抗叶锈病品种具有重要意义。

关键词: 小麦, 基因推导, 分子标记, 抗性基因, 慢锈品种

Abstract:

In recent years, wheat leaf rust has a tendency of aggravation, breeding resistant varieties is the most environmental friendly and effective way to reduce the harm of wheat leaf rust. Twelve wheat varieties and 35 donor lines were inoculated with 19 Chinese pathotypes of Puccinia triticina for leaf rust at seedling stage, and the rust resistance genes in the varieties to be tested were explored through gene derivation and genealogy analysis, and further verified by molecular marker detection. The severity and prevalence rates of wheat were investigated by inoculation of virulent rusts mixed with physiological small species at the stage of plant growth, and selected the slow rust varieties. The results showed that Lr1, Lr26, Lr34, Lr37 and Lr46 were detected in nine varieties of Shixin 828, Bainong 3217, Ji’nan 2, Taishan 1, Shite 14, Jinmai 2148, Yannong 15, Xiaoyan 6, Wenmai 6, among which several resistance genes were found in some varieties. Some of these varieties also contained multiple resistance genes and ten slow rust resistant varieties were selected from the identification of wheat rust-resistant leaves at the mature stage, including Bainong 3217, Pingyang 27, Ji’nan 2, Taishan 1, Shite 14, Jinmai 2148, Bima 4, Yannong 15, Xiaoyan 6, Wenmai 6, a total of ten slow rust peasant wheat varieties and Bima 4 and Xiaoyan 6 were the backbone parents of wheat breeding. It is still important to explore the resistance genes of these varieties for breeding new wheat varieties resistant to leaf rust.

Key words: Wheat, Gene postulation, Molecular marker, Resistance gene, Slow rust varieties

表1

分子标记的引物序列及PCR扩增程序

基因
Gene
引物
Primer
引物序列(5´→3´)
Sequence of primer (5´→3´)
反应程序
Cycle condition
连锁标记
Linked marker
参考文献
Reference
Lr1 WR003 F GGGACAGAGACCTTGGTGGA 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [24]
WR003 R GACGATGATGATTTGCTGCTGG
Lr9 J13/1 TCCTTTTATTCCGCACGCCGG 94℃ 2min;35个循环(94℃ 30s;68.5℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [25]
J13/2 CCACACTACCCCAAAGAGACG
Lr10 Fl.2245 GTGTAATGCATGCAGGTTCC 94℃ 2min;35个循环(94℃ 45s;60℃ 45s;72℃ 30s);72℃ 3 min;4℃保温 STS [26]
Lr10-6/r2 AGGTGTGAGTGAGTTATGTT
Lr19 SCS265 F GGCGGATAAGCAGAGCAGAG 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2 min;10℃保温 SCAR [26]
SCS265 R GGCGGATAAGTGGGTTATGG
Lr19 SCS253 F GCTGGTTCCACAAAGCAAA 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 SCAR [27]
SCS253 R GGCTGGTTCCTTAGATAGGTG
Lr20 STS638 L ACAGCGATGAAGCAATGAAA 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [28]
STS638 R GTCCAGTTGGTTGATGGAAT
Lr24 J9/1 TCTAGTCTGTACATGGGGGC 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2 min;4℃保温 STS [29]
J9/2 TGGCACATGAACTCCATACG
Lr26 ω-secalin F ACCTTCCTCATCTTTGTCCT 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [30]
ω-secalin R CCGATGCCTATACCACTACT
Lr26 Glu-B3 F GGTACCAACAACAACAACCC 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [31]
Glu-B3 R GTTGCTGCTGAGGTTGGTTC
Lr34 csLV34 F GTTGGTTAAGACTGGTGATGG 94℃ 2min;35个循环(94℃ 30s;55℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [32]
csLV34 R TGCTTGCTATTGCTGAATAGT
Lr37 VENTRIUP AGGGGCTACTGACCAAGGCT 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [33]
LN2 TGCAGCTACAGCAGTATGTACACAAAA
Lr46 csLV46G22F F TCGACTTTGGAATGGAGTTGC 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [34]
csLV46G22 R GGCGAAGATGCCATCATCCACCG

表2

35个载体品系、12个供试品种及感病对照品种郑州5389对19个菌系苗期抗性鉴定结果

品种(系)
Cultivar (line)
侵染型Infection types to P. triticina pathotypes
FH
DR
FH
JS
FH
GQ
PH
GN
FH
JR
FH
SQ
FG
KQ
PH
DQ
PH
GL
FH
JQ
FH
BR
FG
BQ
FH
DQ
FH
GQ
FH
JT
TG
KS
FH
JS
PH
TS
FH
DQ
RL6003 (Lr1) 0 ; 1 3+ 1 ; 1 4 3+ ; ; ; 1 ; 1 4 1 3+ ;
RL6016 (Lr2a) ; 1 1 1 1 ; ; ; ; ; ; ; 1 1 ; 3+ ; 1 1
RL6047 (Lr2c) 3+ 4 3 3 4 3 3+ 3+ 3 3+ 3 3 3+ 4 3+ 3+ 4 3+ 3+
RL6002 (Lr3) 4 3+ 3+ 3 3+ 3+ 4 4 3+ 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 4 4
RL6010 (Lr9) 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 ; 0
RL6005 (Lr16) 4 4 3+ 3+ 3+ 3+ 4 4 3+ 3+ 3+ 4 3+ 3 3+ 4 3+ 3+ 3+
RL6064 (Lr24) ; ; 0 ; ; ; ; ; ; ; ; ; ; ; ; ; ; 1 ;
RL6078 (Lr26) 3+ 3 4 3 4 3+ 1 3+ 3 3+ 3+ 1 3+ 3 3+ 2 3+ 4 3+
RL6007 (Lr3ka) 2 1 2 1 1 3 2 2 1 1 1 2 1 2 2 2 1 3+ 2
RL6053 (Lr11) 2 3+ 3 3+ 3+ 3 3 2 3+ 3 1 1 1 3 3 3 3 3+ 2
RL6008 (Lr17) 3+ 3+ 1+ 2 3 3 3 3 2 3+ 2 2+ 3 1 3+ 3+ 3 3+ 3
RL6049 (Lr30) 1 2 2 1 1 2 3 1 1 1 1 1 1 1 1 3+ 1 3+ 1
RL6051 (LrB) 3+ 3+ 3+ 3 3+ 3+ 4 3+ 4 3+ 4 3+ 3+ 4 4 3 4 3+ 4
RL6004 (Lr10) 4 3+ 3+ 2 4 3+ 3+ 3 1 3 4 4 3+ 4 4 4 4 4 3+
RL6013 (Lr14a) X 3 X 3+ X X 1 2 1 1 X 1+ 1 2 3 3+ 3 4 1
RL6009 (Lr18) 3 1 1 2 3 1 1 1 1 1+ 3 1 1 1 3 1 1 2 1
RL6019 (Lr2b) 2 3 1+ 1 3 3 2 2 1 3 1 2 2 2 3 3+ 2 1 2
RL6042 (Lr3bg) 3+ 4 3 3 3+ 3+ 3+ 4 3+ 4 3+ 3+ 3+ 3+ 3+ 4 3+ 4 4
RL4031 (Lr13) 3+ 3+ 2 2 2 4 3 3+ 3 3+ 2 3+ 3+ 3 3+ 3+ 3 4 3
RL6006 (Lr14b) 4 3+ 3+ 3 3+ 3+ 4 3+ 2 3+ 4 3+ 4 4 4 2 3+ 4 3+
品种(系)
Cultivar (line)
侵染型Infection types to P. triticina pathotypes
FH
DR
FH
JS
FH
GQ
PH
GN
FH
JR
FH
SQ
FG
KQ
PH
DQ
PH
GL
FH
JQ
FH
BR
FG
BQ
FH
DQ
FH
GQ
FH
JT
TG
KS
FH
JS
PH
TS
FH
DQ
RL6052 (Lr15) 1 1 ; 1 0 ; 0 4 4 3 ; 0 ; ; 1 3+ 3+ 0 0
RL6040 (Lr19) ; 0 0 0 0 ; 0 0 0 ; 0 ; 0 0 0 0 ; ; ;
RL6092 (Lr20) ; 1 ; 3 1 3+ 1 3 3+ 1 1 ; 1 ; 1 1 3 1 1
RL6043 (Lr21) 3 2 1+ 1 3 3+ 2 1 1 2 1 1 1 1 2 1 1 1 2
RL6012 (Lr23) 3+ 3+ 3+ 3+ 3+ 4 3 3+ 3 3+ 3+ 3+ 4 3+ 3+ 3+ 3 3+ 3+
RL6079 (Lr28) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ; 0
RL6080 (Lr29) 1 1 1+ 1+ 1 1 1 2 1 1 1+ ; 2 ; 1 1 1 1 1
RL6057 (Lr33) 3+ 3 3+ 3 3+ 3+ 3 3+ 3+ 3+ 3+ 4 3+ 3+ 3+ 3 3 3+ 3+
E84018 (Lr36) 1 1+ 1+ 1+ 1 2 1+ 2+ 2 2 1 1 1 1 3 1 1 2 1
KS86NGRC02 (Lr39) 3 2 2 2 2 2 3 3 2 2 3+ 3+ 3 3 2 3+ 1 2+ 3+
KS91WGRC11 (Lr42) 2 2 1+ 1 1 0 1 1+ 1 2 1 1 1 1+ 1 1+ 1 1 1
RL6147 (Lr44) ; 3+ 3 3 3 3 3 2 1 3 3 3+ 3 2 3+ 2 3 3 4
RL6144 (Lr45) 2 3+ 2 4 1 4 2 3+ 3+ 3 1 2 2+ 2 3 2 1 2+ 3
PAVON76 (Lr47) 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 0 0 0 ; 0
C78.5 (Lr51) ; ; ; ; ; ; ; ; ; ; 1 ; 1 ; ; ; ; 0 ;
石新828 Shixin 828 3 3 3 3 3+ 3+ 3 3 3 3+ 3 3+ 3 3+ 3+ 2 3+ 3 3+
百农3217 Bainong 3217 1 1 2 1+ 1 2 1 3 2 ; ; 1 ; 1 ; 3 1 2+ ;
平阳27 Pingyang 27 1 1 ; ; 1 1 1 2 2 1 1 1 ; ; ; 2 1 2 ;
济南2号Ji’nan 2 3 3 3+ 3 3+ 3+ 3+ 3+ 3+ 3+ 3 3 ; 2 3 2 1 4 3
泰山1号Taishan 1 3+ 3 3+ 3+ 3+ 3+ ; 3+ 3+ 3 3 1 3 2+ 3+ 1+ 3+ 3+ 3
石特14 Shite 14 1 1 1 2 2 2 ; 1 2 1 1 1 1 ; ; ; 1 2 2
晋麦2148 Jinmai 2148 3+ 3 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 4 3 3 3+ 3+ 3+ 3+ 4 3
碧蚂4号Bima 4 3 3+ 3+ 3 2 3 3+ 4 3+ 3+ 4 2 2+ 2+ 2 2+ 1 3+ 1
碧蚂1号Bima 1 3+ 3+ 3+ 3 3+ 3+ 1 4 3 3+ 4 ; 3 3 3+ 3 3+ 4 3+
烟农15 Yannong 15 2 1 1 ; 1 1 ; 2+ 2 ; ; ; 1 ; ; 2+ 1 2 1
小偃6号Xiaoyan 6 3+ 3+ 3+ 3+ 3+ 3+ 3+ 4 4 3+ 3+ 3 3 3 3+ 3+ 3 3+ 3
温麦6号Wenmai 6 3+ 3+ 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 3 3 3+ 3 3 3+ 3+ 3+ 3
郑州5389
Zhengzhou 5389
3 4 3+ 4 3 4 3+ 3+ 4 3+ 4 4 4 3+ 4 3+ 3+ 4 3

图1

12个小麦品种中含有的抗叶锈病基因分子标记检测结果 M: DM2000标记或pBR322 DNA标记;Z:郑州5389;1~12:石新828、百农3217、平阳27、济南2号、泰山1号、石特14、晋麦2148、碧蚂4号、碧蚂1号、烟农15、小偃6号、温麦6号

表3

12个供试品种、慢锈对照SAAR和感病对照郑州5389成株期对混合小种侵染型、严重度、普遍率和病情指数结果

品种
Cultivar
混合小种苗期侵染型
Mixed small species infection
type at seedling stage
严重度Final disease severity 普遍率
General rate
(%)
病情指数
Disease index
(%)
2017-2018 2018-2019 平均Average
SAAR 3 1 1 1 100 1
石新828 Shixin 828 4 40 30 35 100 35
百农3217 Bainong 3217 3 1 5 3 98 2.94
平阳27 Pingyang 27 3 1 5 3 100 3
济南2号Ji’nan 2 3+ 10 25 17.5 100 17.5
泰山1号Taishan 1 3 1 5 3 100 3
石特14 Shite 14 3 1 5 3 100 3
晋麦2148 Jinmai 2148 4 15 15 15 100 15
碧蚂4号Bima 4 3+ 5 15 10 100 10
碧蚂1号Bima 1 4 40 60 50 98 49
烟农15 Yannong 15 3 1 1 1 100 1
小偃6号Xiaoyan 6 3 5 10 7.5 100 7.5
温麦6号Wenmai 6 3 5 5 5 100 5
郑州5389 Zhengzhou 5389 4 80 90 85 100 85
[1] 许敏青, 王珅, 孟庆芳, 等. 我国部分地区小麦叶锈菌遗传多样性的SSR分析. 农业生物技术学报, 2013, 21(1):89-96.
[2] Kolmer J A, Ordoñez M E, Manisterski J, et al. Genetic differentiation of Puccinia triticina populations in central Asia and the Caucasus. Phytopathology, 2007, 97(9):1141.
doi: 10.1094/PHYTO-97-9-1141 pmid: 18944179
[3] Bolton M. Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 2010, 9(5):563-575.
doi: 10.1111/mpp.2008.9.issue-5
[4] Huerta-Espino J, Singh R P, Germán S, et al. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 2011, 179(1):143-160.
doi: 10.1007/s10681-011-0361-x
[5] Ordoñez M E, Germán S E, Kolmer J A. Genetic differentiation within the Puccinia triticina population in South America and comparison with the North American population suggests common ancestry and intercontinental migration. Phytopathology, 2010, 100(4):376.
doi: 10.1094/PHYTO-100-4-0376 pmid: 20205541
[6] 王运博, 许高峰. 经济全球化进程中中国粮食安全问题研究. 吉林农业大学学报, 2014, 36(2):243-249.
[7] 刘成, 闫红飞, 宫文萍, 等. 小麦叶锈病新抗源筛选. 植物遗传资源学报, 2013, 14(5):936-944.
[8] 张林, 张梦雅, 高颖, 等. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(4):676-684.
[9] 袁军海, 沈凤英, 吴伟刚, 等. 春小麦品种沈免2063抗叶锈性遗传分析. 植物保护学报, 2018, 45(4):804-811.
[10] 姚金保, 姚国才, 杨学明, 等. 中国小麦抗纹枯病育种研究进展. 江苏农业学报, 2007, 23(3):248-251.
[11] 隋建枢, 王化陆, 辛智海, 等. 122份小麦品种(系)抗叶锈病基因Lr26Lr34Lr38分子标记检测. 种子, 2016, 35(5):41-45.
[12] 袁军海, 陈万权. 春小麦品种青春221抗叶锈性遗传分析. 植物保护学报, 2013, 40(1):20-26.
[13] 郑慧敏, 温晓蕾, 郝晨阳, 等. 70份国外小麦品种(系)的苗期和成株期抗叶锈病鉴定. 作物学报, 2019, 45(10):1455-1467.
[14] 张林, 张梦雅, 高颖, 等. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(04):676-684.
[15] 焦悦, 王思曼, 赵喜兰, 等. 50个国外小麦品种(系)抗叶锈性鉴定. 河南农业科学, 2019, 48(12):79-88.
[16] Qureshi N, Bariana H, Kumran V V, et al. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theoretical and Applied Genetics, 2018, 131(2):1-8.
doi: 10.1007/s00122-017-2954-9
[17] 金夏红, 冯国华, 刘东涛, 等. 小麦抗叶锈病遗传研究进展. 麦类作物学报, 2017, 37(4):504-512.
[18] Long D L. A North American system of nomenclature for Puccinia recondita f. sp. Tritici. Phytopathology, 1989, 79(5):525-529.
doi: 10.1094/Phyto-79-525
[19] Roelfs A P, Singh R P, Saari E E. Resistance to leaf and stem rusts of wheat:concepts and methods of disease management. CIMMYT, 1992:42-45.
[20] Dubin H J, Torres E. Causes and consequences of the 1976-1977 wheat leaf rust epidemic in Northwest Mexico. Annual Review of Phytopathology, 1981, 19(1):41-49.
doi: 10.1146/annurev.py.19.090181.000353
[21] Flor H H. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology, 1955, 45(12):680-685.
[22] 李荣华, 夏岩石, 刘顺枝, 等. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9):14-16.
[23] Sharp P J, Kreis M, Shewry P R, et al. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2):286-290.
doi: 10.1007/BF00303966
[24] Qiu J W, Schürch A C, Yahiaoui N, et al. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theoretical and Applied Genetics, 2007, 115(2):159-168.
doi: 10.1007/s00122-007-0551-z
[25] Schachermayr G, Siedler H, Gale M D, et al. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theoretical and Applied Genetics, 1994, 88(1):110-115.
doi: 10.1007/BF00222402 pmid: 24185890
[26] Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 1997, 39(1):65-74.
doi: 10.1007/s11032-019-0970-y
[27] Gupta S K, Charpe A, Prabhu K V, et al. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theoretical and Applied Genetics, 2006, 113(6):1027-1036.
doi: 10.1007/s00122-006-0362-7
[28] Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002, 45(4):737-744.
doi: 10.1139/g02-040
[29] Schachermayr G M, Messmer M M, Feuillet C, et al. Identification of molecular markers linked to the Agrophyron elongatumderved leaf rust resistance gene Lr24 in wheat. Theoretical and Applied Genetics, 1995, 90(7):982-990.
doi: 10.1007/BF00222911
[30] Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations. Plant Breeding, 2006, 125(3):302-304.
doi: 10.1111/pbr.2006.125.issue-3
[31] Froidmont D D. A codominant marker for 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science, 1998, 27(3):229-232.
doi: 10.1006/jcrs.1998.0194
[32] Lagudah E S, Mcfadden H, Singh R P, et al. Molecular genetic of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006, 114(1):21-30.
pmid: 17008991
[33] Baszczyk L, Goyeau H, Huang X Q, et al. Identifying leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. Cellular and Molecular Biology Letters, 2004, 9(4B):869-878.
[34] Kazuhiro S, Singh R P, Manilal H M. Tagging of slow rusting genes for leaf rust,Lr34 and Lr46,using microsatellite markers in wheat. Research Highlights, 2001, 93:881-890.
[35] 杨华丽, 张晓玲, 赵艳博, 等. 小麦品种莱州137抗叶锈病鉴定及基因检测. 植物遗传资源学报, 2018, 19(2):289-295.
[36] Li Z F, Xia X C, He Z H, et al. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94(1):45-53.
doi: 10.1094/PDIS-94-1-0045 pmid: 30754399
[37] 刁慧珊, 梁邦平, 李家创, 等. 156份小麦种质资源的纹枯病抗性鉴定与评价. 麦类作物学报, 2018, 38(11):123-131.
[38] Colin W, Hiebert J B, Thomas B D, et al. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 2010, 121(6):1083-1091.
doi: 10.1007/s00122-010-1373-y pmid: 20552325
[39] 张晓玲, 张换换, 徐新玉, 等. 河北省12个小麦主栽品种(系)抗叶锈性鉴定及基因分析. 植物遗传资源学报, 2019, 20(4):982-990.
[40] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003(1):190-194.
[41] 刘新春, 赖运平, 刘仙俊, 等. Lr1基因在四个小麦骨干亲本衍生系中的分布及选择效应. 麦类作物学报, 2014, 34(5):597-602.
[42] 丁艳红, 刘欢, 师丽红, 等. 28个小麦微核心种质抗叶锈性分析. 作物学报, 2010, 36(7):1126-1134.
[43] Mclntosh R A, Baker E P. Cytogenetical studies in wheat IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970, 19(1):71-77.
doi: 10.1007/BF01904668
[44] Cloutier S, Mccallum B D, Loutre C, et al. Leaf rust resistance gene Lr1,isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 2007, 65(1/2):93-106.
doi: 10.1007/s11103-007-9201-8
[45] 孟倩, 孙道杰, 谢静雅. 部分小麦材料及黄淮南片区试品种Lr34/Yr18/Pm38基因型检测. 麦类作物学报, 2011, 31(2):224-228.
[46] 魏新燕, 杨文香, 刘大群, 等. 150个小麦品种(系)抗叶锈基因Lr35分子检测. 中国农业科学, 2004, 37(12):1951-1954.
[47] Singh R P, Mujeeb-Kazi A, Huerta-Espino J. Lr46:a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998, 88(9):890-894.
doi: 10.1094/PHYTO.1998.88.9.890 pmid: 18944865
[1] 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 1–5
[2] 吴鑫雨, 刘振洋, 李海叶, 郑毅, 汤利, 肖靖秀. 施氮和间作对蚕豆根瘤形成及氮素吸收累积的影响[J]. 作物杂志, 2021, (5): 120–127
[3] 王云, 乔玲, 闫素仙, 武棒棒, 郑兴卫, 赵佳佳. 山西省不同年代旱地小麦产量构成因素及抗旱性特征分析[J]. 作物杂志, 2021, (5): 43–49
[4] 亓晓蕾, 李兴锋, 吕广德, 王瑞霞, 王君, 孙宪印, 孙盈盈, 陈永军, 钱兆国, 吴科. 基于SNP分子标记的泰山/泰科麦系列小麦遗传解析[J]. 作物杂志, 2021, (5): 64–71
[5] 娄树宝, 李凤云, 田国奎, 王海艳, 田振东, 王立春, 刘喜才, 王辉. 马铃薯种质资源晚疫病抗性评价及分子标记辅助筛选[J]. 作物杂志, 2021, (4): 196–201
[6] 杜晓宇, 李楠楠, 邹少奎, 王丽娜, 吕永军, 张倩, 李顺成, 杨光宇, 韩玉林. 黄淮南片新育成小麦品种(系)主要性状的综合性分析[J]. 作物杂志, 2021, (4): 38–45
[7] 高清, 张亚玲, 周弋力, 于连鹏, 聂强, 靳学慧. 黑龙江省粳稻品种稻瘟病主效抗性基因鉴定与抗性评价[J]. 作物杂志, 2021, (4): 59–66
[8] 李梦钰, 高闯, 李巧云, 徐凯歌, 王丝雨, 牛吉山. 苗期及灌浆期抗Bipolaris sorokiniana叶枯病小麦品种(系)鉴定及相关性分析[J]. 作物杂志, 2021, (3): 40–45
[9] 周正萍, 田宝庚, 陈婉华, 王子阳, 袁伟, 刘世平. 不同耕作方式与秸秆还田对土壤养分及小麦产量和品质的影响[J]. 作物杂志, 2021, (3): 78–83
[10] 赵庆玲, 林文, 任爱霞, 张蓉蓉, 李蕾, 孙敏, 高志强. 春季追肥对冬小麦群体构建和籽粒灌浆进程的影响[J]. 作物杂志, 2021, (3): 99–105
[11] 贾子苗, 邱玉亮, 林志珊, 王轲, 叶兴国. 利用近缘种属优良基因改良小麦研究进展[J]. 作物杂志, 2021, (2): 1–14
[12] 刘阿康, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 高甜甜, 王玉娇, 阚茗溪, 赵广才, 常旭虹. 苗期调控对晚播小麦产量及氮素利用的影响[J]. 作物杂志, 2021, (2): 116–123
[13] 王玉娇, 曹祺, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才, 石书兵. 不同土壤条件下化学调控对小麦产量和品质的影响[J]. 作物杂志, 2021, (2): 96–100
[14] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[15] 安娟华, 董鑫, 王克俭, 何振学. 基于GWO优化SVM的小麦籽粒优劣分级研究[J]. 作物杂志, 2021, (1): 200–206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!