作物杂志,2021, 第6期: 171–176 doi: 10.16035/j.issn.1001-7283.2021.06.027

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

打顶后喷施不同浓度GA3和6-BA对烤烟农艺性状和化学成分的影响

谷宇超1(), 杨懿德2(), 鄢敏2, 刘勇2, 杨建2, 向金友2, 罗柱石2, 李林秋2, 景延秋1(), 杨洋2()   

  1. 1河南农业大学烟草学院,450002,河南郑州
    2四川省烟草公司宜宾市公司,644002,四川宜宾
  • 收稿日期:2021-04-02 修回日期:2021-05-24 出版日期:2021-12-15 发布日期:2021-12-16
  • 通讯作者: 景延秋,杨洋
  • 作者简介:谷宇超,主要研究方向为烟草栽培和烟草化学,E-mail: guyuchaovip@vip.qq.com
  • 基金资助:
    四川省烟草公司宜宾市公司科技攻关项目(201851150024089)

Effects of GA3 and 6-BA on Agronomic Traits and Chemical Components of Flue Cured Tobacco after Topping

Gu Yuchao1(), Yang Yide2(), Yan Min2, Liu Yong2, Yang Jian2, Xiang Jinyou2, Luo Zhushi2, Li Linqiu2, Jing Yanqiu1(), Yang Yang2()   

  1. 1College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Yibin Branch of Sichuan Tobacco Company, Yibin 644002, Sichuan, China
  • Received:2021-04-02 Revised:2021-05-24 Online:2021-12-15 Published:2021-12-16
  • Contact: Jing Yanqiu,Yang Yang

摘要:

以云烟87为试验材料,研究打顶后叶面喷施不同浓度的赤霉素(GA3)和6-苄氨基嘌呤(6-BA)植物生长调节剂组合对烤烟生长和烟叶化学成分的影响。结果表明,在打顶当天喷施GA3和6-BA可以增加烤烟叶面积,GA3浓度为100mg/L、6-BA浓度为40mg/L时,烤烟叶面积增加最多;喷施GA3和6-BA可以提高烟叶叶绿素含量,且随着二者浓度提高烟叶叶绿素含量呈增加趋势;外源GA3和6-BA主要对碳氮化合物起调节作用,GA3和6-BA联用可以提高烟叶中总糖、还原糖和钾含量,而单施6-BA则会引起烟碱含量升高,当GA3浓度为50mg/L、6-BA浓度为40mg/L时,总糖和还原糖含量最高;不同浓度的GA3和6-BA主要影响烟叶香味物质中的类胡萝卜素降解产物和新植二烯,当GA3浓度为50mg/L、6-BA浓度为40mg/L时,烟叶中胡萝卜素降解产物和新植二烯等香味物质含量较高。

关键词: 烤烟, 打顶, GA3, 6-BA, 农艺性状, 化学成分

Abstract:

Yunyan 87 was used as the experimental material to study the effects of different concentrations of gibberellin (GA3) and 6-benzylaminopurine (6-BA) plant growth regulators on the growth and quality of flue-cured tobacco by foliar spraying after topping. The results showed that, spraying GA3 and 6-BA on the day of topping could increase the leaf area of flue-cured tobacco and maximum increase was observed in case of 100mg/L GA3 and 40mg/L 6-BA. Spraying GA3 and 6-BA could increase the chlorophyll content in tobacco leaves, and chlorophyll content increased with the increase of GA3 and 6-BA concentrations. GA3 and 6-BA mainly regulated carbon and nitrogen compounds, the combination of GA3 and 6-BA could increase contents of the total sugar, reducing sugar and potassium in tobacco leaves, while the use of 6-BA alone could increase nicotine content. When the concentration of GA3 was 50mg/L and 6-BA was 40mg/L, the contents of total sugar and reducing sugar were the highest. Different concentrations of GA3 and 6-BA mainly affected the degradation products of carotenoid and neophytadiene in tobacco flavor. When the concentration of GA3 was 50mg/L and 6-BA was 40mg/L, the contents of carotenoid degradation products and neophytadiene in tobacco were higher.

Key words: Tobacco, Topping, GA3, 6-BA, Agronomic traits, Chemical composition

表1

GA3与6-BA叶面配施浓度设置

处理 GA3 6-BA 处理 GA3 6-BA
T1 0 0 T6 50 40
T2 0 20 T7 100 0
T3 0 40 T8 100 20
T4 50 0 T9 100 40
T5 50 20

表2

不同浓度GA3和6-BA的烤烟农艺性状

处理
Treatment
株高
Plant height (cm)
最大叶长
Maximum leaf length (cm)
最大叶宽
Maximum leaf width (cm)
茎围
Stem girth (cm)
最大叶面积
Maximum leaf area (cm2)
T1 120.61±2.95bc 74.71±1.04e 23.06±0.84f 10.40±0.95a 1102.68±58.68f
T2 120.10±2.244c 74.70±0.96e 23.36±0.57ef 10.17±0.91a 1098.41±31.53f
T3 120.85±2.75bc 75.26±0.94de 23.35±0.64ef 10.36±0.98a 1106.07±53.25ef
T4 122.67±1.64a 75.70±1.38cd 23.85±0.81de 10.53±0.91a 1139.38±53.11de
T5 122.50±1.54a 76.32±1.04bc 24.08±0.63cd 10.71±0.96a 1162.99±44.51cd
T6 122.14±2.00ab 76.67±0.78ab 24.42±0.77bc 10.34±0.79a 1178.40±62.61bc
T7 122.79±1.77a 75.78±0.95cd 24.21±0.64cd 10.85±0.64a 1159.72±59.22cd
T8 123.47±2.21a 77.04±0.70ab 24.84±0.46b 10.54±0.92a 1218.34±46.91ab
T9 123.37±2.41a 77.17±0.95a 25.48±0.69a 10.63±0.92a 1243.46±45.68a
GA3 21.063** 39.386** 28.314** 1.879 30.435**
6-BA 0.027 11.098** 5.701** 0.372 5.830*
GA3×6-BA 0.610 1.596 2.159 0.518 1.532

表3

不同浓度GA3和6-BA的烤烟质体色素含量

处理
Treatment
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
类胡萝卜素
Carotenoid
T1 0.61±0.26d 0.21±0.02a 0.25±0.03a
T2 0.69±0.38c 0.22±0.02ab 0.24±0.04ab
T3 0.74±0.25ab 0.22±0.02ab 0.22±0.02ab
T4 0.69±0.35bc 0.21±0.01ab 0.23±0.04ab
T5 0.71±0.20bc 0.22±0.01ab 0.25±0.03ab
T6 0.73±0.15abc 0.24±0.02ab 0.25±0.02abc
T7 0.71±0.25bc 0.22±0.01ab 0.26±0.03bc
T8 0.74±0.20ab 0.24±0.01b 0.26±0.03bc
T9 0.77±0.12a 0.24±0.01b 0.23±0.02c
GA3 19.690** 3.610* 2.643
6-BA 32.559** 3.683* 2.804
GA3×6-BA 4.047* 0.537 2.696

表4

不同浓度GA3和6-BA下烤烟叶片常规化学成分

处理Treatment 总糖Total sugar 还原糖Reducing sugar 总氮Total N 烟碱Nicotine 钾K 氯Cl
T1 22.11±0.50e 20.28±0.51e 1.83±0.08ab 2.09±0.05bc 1.80±0.03d 0.25±0.01a
T2 23.30±0.28d 21.80±0.28cd 1.78±0.21b 2.30±0.09ab 1.86±0.19cd 0.27±0.03a
T3 24.08±0.28c 22.58±0.28bc 2.04±0.04a 2.48±0.02a 1.99±0.07bcd 0.19±0.05a
T4 22.00±0.14e 20.50±0.14d 1.68±0.06b 1.93±0.14cd 2.11±0.04ab 0.21±0.11a
T5 25.08±0.50b 23.58±0.58ab 1.73±0.10b 1.98±0.23cd 2.22±0.03a 0.25±0.02a
T6 25.43±0.29ab 23.93±0.46a 2.00±0.11a 2.16±0.30bc 2.25±0.12a 0.23±0.05a
T7 23.89±0.18cd 22.39±0.76b 1.65±0.09b 1.74±0.06d 2.14±0.16ab 0.20±0.07a
T8 25.89±0.25a 24.39±0.43a 1.85±0.16ab 1.88±0.13cd 1.92±0.10bcd 0.19±0.04a
T9 25.64±0.54ab 24.14±0.37a 1.63±0.10b 2.08±0.10bc 2.07±0.21abc 0.25±0.03a
GA3 8.731* 11.923* 4.863* 15.235* 14.372* 0.365
6-BA 15.112* 20.328** 4.845* 9.845* 1.682 0.139
GA3×6-BA 7.898** 6.424** 4.499* 0.278 1.811 1.500

表5

不同浓度GA3和6-BA的烤烟香味物质含量

处理
Treatment
美拉德反应产物
The Millard reaction
product
苯丙氨酸类代谢产物
Phenyl-alanine-class
metabolites
类胡萝卜素降解产物
Carotenoid degradation
products
新植二烯
Neophytadiene
类西柏烷类降解产物
Cyeane degradation
products
T1 21.94±3.67a 13.12±2.77a 83.23±3.03a 831.47±14.91def 22.46±4.50a
T2 21.23±4.54a 12.63±3.90a 81.46±14.18a 852.97±13.11cde 32.07±10.70a
T3 21.54±4.24a 13.58±2.40a 81.61±10.71a 896.22±9.12bcd 21.23±1.96a
T4 20.75±3.97a 13.95±3.57a 83.65±15.35a 781.97±35.88ef 33.15±12.10a
T5 26.16±1.69a 15.82±3.90a 81.60±21.64a 953.75±74.81b 25.47±2.16a
T6 26.03±1.19a 15.62±0.85a 92.59±3.27a 1107.66±99.05a 24.49±5.21a
T7 22.79±2.89a 13.28±1.64a 76.66±6.47a 761.25±18.77f 36.36±4.32a
T8 24.28±2.13a 13.95±3.21a 78.00±6.49a 1053.00±18.36a 21.67±4.42a
T9 23.11±2.13a 16.06±1.54a 80.82±4.46a 919.55±16.28bc 19.63±4.03a
[1] 童治军, 方敦煌, 陈学军, 等. 6个烟草重要产量相关性状的遗传分析. 中国烟草学报, 2020, 26(5):72-81.
[2] 刘春奎, 王国良, 王晓宾, 等. 植物生长调节剂对烤烟品质影响的研究进展. 安徽农学通报, 2010, 16(17):99-100.
[3] 邹琳娜, 王兴银. 植物生长调节剂在设施园艺生产上的应用现状(二). 农村实用工程技术(温室园艺), 2005(2):34-35.
[4] 张晓英, 禚照卿, 李秀艳, 等. 赤霉素在烤烟上的应用效果研究. 现代农业科技, 2018, 733(23):150-151.
[5] 李卫华, 齐绍武, 胡宇, 等. 植物外源激素在烟草生产上的应用. 江西农业学报, 2008, 20(11):50-52.
[6] 王贵元. 不同浓度6-BA和GA3处理对豆梨实生苗生长的影响. 吉林农业科学, 2015, 40(4):87-89.
[7] 吴进东, 尹亚楠. 6-BA对霍山石斛生长及品质的调控效应. 唐山师范学院学报, 2020, 42(6):63-67.
[8] 杨洁, 胡日生, 童建华, 等. 打顶对烟草腋芽生长及植物激素含量的影响. 烟草科技, 2013, 315(10):72-75.
[9] 洪丽芳, 付丽波, 赵宗胜, 等. 烤烟钾素库源关系生理调控措施研究. 植物营养与肥料学报, 2001, 7(4):404-409.
[10] 邹焱, 苏以荣. 打顶及施用生理调节剂对烤烟主要化学成分的影响. 中国烟草科学, 2008, 29(2):1-4.
[11] 张文明, 邱慧珍, 何秀成, 等. 外源激素对陇东旱塬烤烟主要品质指标和产量、产值的影响. 干旱地区农业研究, 2012, 30(3):180-183,193.
[12] 周继华, 杨铁钊, 巩巧玲, 等. 外源GA3与ABA对烤烟茎尖内源激素调控及生长的影响. 干旱地区农业研究, 2009, 27(3):198-202.
[13] 刘超, 武云杰, 张安乾, 等. 外源GA3和IAA对烤烟内源激素调控效应和常规化学成分的影响. 中国农业科技导报, 2019, 21(8):153-160.
[14] 王林, 朱金峰, 许自成. 烤烟打顶后喷施外源激素对中部烟叶品质的互作效应. 核农学报, 2016, 30(12):2411-2417.
[15] 王杰, 葛春妹, 秦元柱, 等. 外源激素对杭白菊分枝及产量和品质的影响. 山东农业科学, 2020, 52(8):51-56.
[16] 孟云, 马少锋, 邵建柱, 等. 喷施6-BA对‘天红2号’苹果苗腋芽萌发及其内源激素的影响. 园艺学报, 2012, 39(5):837-844.
[17] 衣琨, 赵一航, 胡尧, 等. GA3和6-BA对高加索三叶草根蘖芽生长及内源激素含量的影响. 草业学报, 2020, 29(2):22-30.
[18] 全国烟草标准化技术委员会农业分技术委员会. 烟草农艺性状调查方法:YC/T 142-2010. 北京:国家烟草专卖局, 2010.
[19] 李炎强, 郝建辉, 赵明月, 等. 烤烟烟梗和叶片中性香味成分的分析. 烟草科技, 2002(11):3-6.
[20] 董昆乐, 毛家伟, 孔德辉, 等. 叶面喷施不同调节剂对烟叶质量的影响. 湖北农业科学, 2020, 59(14):108-111,116.
[21] 李冉, 程森, 周超, 等. 烟叶发育状况与其感官评吸质量关系研究. 安徽农业科学, 2019, 47(21):209-213.
[22] 刘健康. 不同外源植物激素配比对烤烟生长发育及产质量的影响. 郑州:河南农业大学, 2004.
[23] 郑登峰, 熊晶, 文德锋, 等. 栽培技术对‘云烟87’田间生长及产量质量的影响. 热带农业工程, 2019, 43(4):1-8.
[24] 黄敏. 种植密度、施氮量及留叶数对烤烟新品种云烟99的影响. 昆明:云南农业大学, 2017.
[25] 韩建民, 商振清, 董永华, 等. 6-BA,IAA促进玉米叶片伸长机理研究. 玉米科学, 1997(3):50-52.
[26] 李健忠, 薛立新, 朱金峰, 等. 打顶后喷施油菜素内酯和生长素对烤烟田间生长、碳氮代谢及烟叶品质的影响. 中国生态农业学报, 2015, 23(11):1404-1412.
[27] 黎根, 毕庆文, 汪健, 等. 烤烟主要化学成分与烟叶品质关系研究进展. 河北农业科学, 2007, 66(6):6-9,41.
[28] 薛琳, 朱启法, 季学军, 等. 皖南烤烟烟叶化学成分与感官品质的相关性. 烟草科技, 2016, 49(11):26-32.
[29] 周继华, 聂红资, 豆显武, 等. 外源GA3与ABA对烤烟叶片内源激素及钾素含量的影响. 甘肃农业大学学报, 2009, 44(5):61-66.
[30] 韩锦峰, 赫冬梅, 刘华山, 等. 不同植物激素处理方法对烤烟内烟碱含量的影响. 中国烟草学报, 2001, 7(2):22-25.
[31] 景延秋, 宫长荣, 高玉珍, 等. 烟草香味物质及其形成的前体物质研究进展. 湛江海洋大学学报(自然科学), 2006, 26(1):94-98.
[32] 高远, 张艳玲, 张仕祥, 等. 不同香型烤烟类胡萝卜素及其降解产物含量与感官质量的关系. 烟草科技, 2014, 319(2):38-43.
[33] 杨虹琦, 周冀衡, 杨述元, 等. 不同产区烤烟中主要潜香型物质对评吸质量的影响研究. 湖南农业大学学报(自然科学版), 2005, 31(1):11-14.
[34] 韩富根, 董祥洲, 王初亮, 等. 植物生长物质对烤烟上部叶生长生理、质体色素及其降解产物的影响. 江西农业大学学报, 2010, 32(6):1109-1114.
[35] 高慧君, 明家琪, 张雅娟, 等. 园艺植物中类胡萝卜素合成与调控的研究进展. 园艺学报, 2015, 42(9):1633-1648.
[1] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响[J]. 作物杂志, 2021, (6): 139–144
[2] 罗磊, 李亚杰, 姚彦红, 李丰先, 范奕, 董爱云, 刘惠霞, 牛彩萍, 李德明. 不同小整薯规格和药剂拌种处理对旱作重茬马铃薯生长及产量的影响[J]. 作物杂志, 2021, (6): 211–216
[3] 王初亮, 宋文峰, 关罗浩, 谢晋, 黄浩, 李旺阳, 王维. 云南红河烟区覆膜方式及移栽苗龄对烤烟产量和品质形成的影响[J]. 作物杂志, 2021, (6): 95–100
[4] 张琦, 魏臻武, 闫天芳. 江淮地区燕麦籽粒产量与农艺性状的相关性及通径分析[J]. 作物杂志, 2021, (5): 146–152
[5] 刘文龙, 宁尚辉, 曹明锋, 祝利, 高玉珍, 张学伟, 文梓祥, 姜宝迪, 景延秋, 邓勇. 桃源县植烟土壤微量元素与烟叶常规化学成分相关性分析[J]. 作物杂志, 2021, (5): 176–180
[6] 张久权, 余祥文, 凌爱芬, 王勇, 李磊磊, 董建新. 烤烟膜下小苗移栽育苗盘规格优选研究[J]. 作物杂志, 2021, (4): 123–129
[7] 张嘉雯, 卢绍浩, 赵铭钦, 钟秋, 王俊, 易凯, 向欢. 施氮量对四川雪茄烟叶碳氮代谢及品质的影响[J]. 作物杂志, 2021, (4): 159–165
[8] 朱旭, 胡卫丽, 杨厚勇, 许阳, 向臻, 杨玲, 杨鹏程. 南阳盆地适宜机械化收获绿豆品种(系)农艺性状分析[J]. 作物杂志, 2021, (4): 93–98
[9] 汪坤, 魏跃伟, 姬小明, 云菲, 邹凯, 隆准. 生物炭基肥与哈茨木霉菌剂配施对烤烟和植烟土壤质量的影响[J]. 作物杂志, 2021, (3): 106–113
[10] 王慧芳, 张希, 冯小虎, 李一凡, 张红, 赵松超, 赵铭钦. 不同植物生长调节剂对烤烟生长发育的影响[J]. 作物杂志, 2021, (3): 173–177
[11] 冯新维, 黄莺, 吴贵丽, 芶剑渝, 彭玉龙. 不同钙浓度对烤烟生长及镁吸收的影响[J]. 作物杂志, 2021, (3): 190–194
[12] 张希, 王慧芳, 代卓毅, 薛刚, 徐世晓, 杨铁钊. 基因型、施氮量及其互作对烤烟多酚类物质的影响[J]. 作物杂志, 2021, (3): 84–90
[13] 周月霞, 范昱, 阮景军, 严俊, 赖弟利, 彭艳, 唐勇, 翁文凤, 程剑平. 燕麦籽粒营养与农艺性状相关性分析[J]. 作物杂志, 2021, (2): 165–172
[14] 张芸萍, 郭山虎, 张锦涛, 解燕, 易克, 李强. 曲靖烟区烟叶微量元素与土壤pH值关系研究[J]. 作物杂志, 2021, (2): 178–182
[15] 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 52–56
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!