作物杂志,2022, 第3期: 225–232 doi: 10.16035/j.issn.1001-7283.2022.03.033

• 生理生化·植物营养·栽培耕作 • 上一篇    

氮肥运筹对湘南双季杂交稻产量与抗倒伏特性的影响

苏雨婷(), 袁帅(), 李永松, 崔璨, 陈平平, 王晓玉, 易镇邪()   

  1. 湖南农业大学农学院/南方粮油作物协同创新中心,410128,湖南长沙
  • 收稿日期:2021-04-09 修回日期:2022-02-14 出版日期:2022-06-15 发布日期:2022-06-20
  • 通讯作者: 易镇邪
  • 作者简介:苏雨婷,主要从事作物高产生理与资源高效利用研究,E-mail: 1256801231@qq.com
  • 基金资助:
    国家重点研发计划“粮食丰产增效科技创新”重点专项(2017YFD0301501);国家重点研发计划“粮食丰产增效科技创新”重点专项(2018YFD0301005)

Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan

Su Yuting(), Yuan Shuai(), Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie()   

  1. College of Agronomy, Hunan Agricultural University/South Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2021-04-09 Revised:2022-02-14 Online:2022-06-15 Published:2022-06-20
  • Contact: Yi Zhenxie

摘要:

为探究不同氮肥运筹方式对湘南双季杂交稻产量与抗倒伏能力的影响,以早稻品种陆两优996和株两优819,晚稻品种H优518和盛泰优018为材料,于2019-2020年在湖南省衡阳县开展大田试验,比较研究3个基蘖肥、穗肥、粒肥比例(N1:7:2:1,N2:6:3:1,N3:5:4:1)对双季稻产量和抗倒伏性状的影响。结果表明,氮肥运筹方式对双季稻产量有显著影响,N2处理对产量构成因素协调效果最好,产量最高;各品种在基蘖肥比例为50%~60%的条件下,抗折力较大,倒伏指数较小,但个别品种表现出年际间差异;与N1处理相比,N2和N3处理株高较矮、重心较低、茎壁较厚、节间较短且节间充实度较高,N2和N3处理间差异不显著。相关分析表明,提高抗倒伏能力的关键在于降低株高、重心高度和单茎鲜重,提高倒4节间茎秆粗度和充实度。综合考虑各品种倒伏指数和产量性状,基蘖肥、穗肥、粒肥比例为6:3:1的处理能够较好地协调水稻的产量性状与抗倒伏能力,达到高产和抗倒的目的。

关键词: 双季稻, 湘南, 氮肥运筹, 产量, 抗倒伏

Abstract:

To explore the effects of different nitrogen fertilizer management modes on yield and lodging resistance of double-cropping hybrid rice in southern Hunan, field experiments were conducted with early rice varieties Luliangyou 996 and Zhuliangyou 819 and late rice varieties H you 518 and Shengtaiyou 018 as materials for comparative study of the effects of three proportion of basal and tiller fertilizer, panicle fertilizer, and grain fertilizer (N1: 7:2:1, N2: 6:3:1, and N3: 5:4:1) on yield and lodging resistance of double-cropping rice in Hengyang county, Hunan province, in 2019-2020. The results showed that nitrogen management mode had a significant effects on the yield of double-cropping rice. The N2 treatment had the best coordination effects on the yield components and the yield was the highest. Under the condition of 50%-60% basal and tiller fertilizer ratio, all varieties had higher bending resistance and lower lodging index but individual varieties showed inter-annual differences. Compared with N1, N2 and N3 treatments had lower plant height, lower center of gravity, thicker stem wall, shorter internode, and higher internode fullness and there was no significant difference between N2 and N3 treatments. Correlation analysis showed that the key to improve lodging resistance was to reduce plant height, the height of the center of gravity, and fresh weight of single stem and to improve stem diameter and fullness of the 4th internode from the top. Comprehensively considering the lodging index and yield characters of different varieties, 6:3:1 treatment with ratio of basal and tiller fertilizer, panicle fertilizer, and grain fertilizer could better coordinate the yield characters and lodging resistance of rice to achieve the goal of high yield and lodging resistance.

Key words: Double-cropping rice, Southern Hunan, Nitrogen fertilizer management, Yield, Lodging resistance

表1

氮肥运筹对水稻产量及其构成因素的影响(2019年)

品种
Variety
处理
Treatment
有效穗数
Effective panicle
(×104/hm2)
穗粒数
Grains per
panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (t/hm2)
实际产量
Actual yield
(t/hm2)
陆两优996 N1 303.90a 85.76b 76.40b 28.20a 5.62b 5.45b
Luliangyou 996 N2 285.40b 105.92a 78.99a 27.73a 6.62a 6.25a
N3 278.20b 104.08a 76.37b 28.43a 6.29a 6.02a
株两优819 N1 324.60a 100.51b 76.02b 24.78a 6.15b 5.89b
Zhuliangyou 819 N2 313.90b 112.68a 77.25ab 24.64a 6.73a 6.48a
N3 302.30c 115.50a 78.10a 24.85a 6.78a 6.44a
H优518 N1 357.33a 104.90b 77.71b 25.87a 7.54b 7.22b
H you 518 N2 337.50b 115.81ab 78.53ab 25.81a 7.92a 7.61a
N3 325.83b 111.50a 79.40a 25.94a 7.48b 7.26ab
盛泰优018 N1 376.49a 114.70b 73.87b 25.22a 8.05b 7.81b
Shengtaiyou 018 N2 350.17ab 128.65a 79.63a 25.28a 9.07a 8.75a
N3 332.33b 129.95a 78.40a 24.67b 8.35b 8.11b

表2

氮肥运筹对水稻产量及其构成因素的影响(2020年)

品种
Variety
处理
Treatment
有效穗数
Effective panicle
(×104/hm2)
穗粒数
Grains per
panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
陆两优996 N1 292.63a 79.98a 78.56a 26.67b 4.93b 4.73b
Luliangyou 996 N2 305.85a 80.37a 76.87a 28.52ab 5.46a 5.22a
N3 298.13a 74.28b 77.62a 30.11a 5.20ab 5.03ab
株两优819 N1 294.25b 83.91a 80.12a 27.26a 5.44b 5.25b
Zhuliangyou 819 N2 354.25a 82.35a 77.28a 27.86a 6.21a 5.88a
N3 316.64b 82.29a 79.02a 27.92a 5.80ab 5.47b
H优518 N1 307.64b 115.22a 68.14a 24.58a 5.93b 5.77b
H you 518 N2 336.88a 122.37a 70.74a 23.87a 6.92a 6.66a
N3 322.94ab 120.62a 66.47a 24.93a 6.43ab 6.24ab
盛泰优018 N1 302.61b 113.32a 65.98b 29.11a 6.58a 6.34b
Shengtaiyou 018 N2 330.08a 110.33a 71.43a 28.68a 7.39a 7.11a
N3 309.17b 112.05a 72.71a 28.14a 7.08a 6.78ab

表3

不同氮肥运筹方式下水稻节间抗折力、弯曲力矩和倒伏指数(2019年)

品种
Variety
处理
Treatment
倒3节间The 3rd internode from the top 倒4节间The 4th internode from the top
抗折力
Bending
resistance (g)
弯曲力矩
Bending moment
of force (cm·g)
倒伏指数
Lodging index
[(cm·g)/g]
抗折力
Bending
resistance (g)
弯曲力矩
Bending moment
of force (cm·g)
倒伏指数
Lodging index
[(cm·g)/g]
陆两优996
Luliangyou 996
N1 453.10b 1062.36a 234.49a 1059.59a 1275.27a 125.40a
N2 531.91a 1102.60a 207.34b 1092.88a 1320.23a 120.37a
N3 503.44a 1073.12a 212.94ab 1083.41a 1288.25a 121.77a
株两优819
Zhuliangyou 819
N1 629.83c 869.90a 138.66a 1072.39b 1008.97a 94.06a
N2 838.92a 879.56a 105.02b 1262.24a 1016.26a 80.46b
N3 741.45b 871.42a 117.55b 1112.60b 1006.42a 90.60ab
H优518
H you 518
N1 718.09b 787.69b 109.91a 899.85c 967.53b 107.54a
N2 970.17a 945.95a 98.56ab 1235.00a 1084.78a 87.83b
N3 934.07a 844.48b 90.77b 1070.96b 1007.15ab 94.23b
盛泰优018
Shengtaiyou 018
N1 923.60b 799.47a 86.58a 1187.66a 944.44a 79.57a
N2 928.52b 695.95b 75.00ab 1038.45b 826.43b 78.92a
N3 1059.64a 759.10ab 72.12b 1299.16a 889.30ab 68.67b

表4

不同氮肥运筹方式下水稻节间抗折力、弯曲力矩和倒伏指数(2020年)

品种
Variety
处理
Treatment
倒3节间The 3rd internode from the top 倒4节间The 4th internode from the top
抗折力
Bending
resistance (g)
弯曲力矩
Bending moment
of force (cm·g)
倒伏指数
Lodging index
[(cm·g)/g]
抗折力
Bending
resistance (g)
弯曲力矩
Bending moment
of force (cm·g)
倒伏指数
Lodging index
[(cm·g)/g]
陆两优996
Luliangyou 996
N1 834.10a 526.60b 63.13b 915.20a 609.57b 66.82b
N2 899.27a 561.03a 62.60a 940.93a 684.22a 72.71b
N3 860.89a 579.47a 67.25a 727.93b 678.41a 93.29a
株两优819
Zhuliangyou 819
N1 950.22a 539.39a 56.31a 945.61a 601.22a 63.65b
N2 967.77a 459.94b 47.55b 949.44a 518.86b 54.68c
N3 956.58a 534.42a 55.21a 707.05b 637.08a 89.34a
H优518
H you 518
N1 969.24a 856.10a 88.39a 1262.57b 1023.10a 81.05a
N2 908.77a 801.69a 88.22a 1408.66a 914.94b 65.50b
N3 906.58a 805.96a 89.03a 1411.05a 958.30ab 67.97b
盛泰优018
Shengtaiyou 018
N1 924.36b 620.81b 67.54b 1108.70b 738.76b 66.24b
N2 1056.60a 704.07a 66.64b 1266.62a 826.98a 65.29b
N3 726.29c 660.75b 90.86a 994.37c 754.78b 75.64a

表5

不同氮肥运筹条件下水稻茎秆物理性状(2019年)

品种
Variety
处理
Treatment
株高
Plant
height
(cm)
重心高度
Gravity
center
height
(cm)
单茎鲜重
Fresh weight
per stem
(g)
茎秆粗度
Stem
diameter
(mm)
茎壁厚度
Stem wall
thickness
(mm)
节间长度
Length of internode (cm)
节间充实度
Fullness of internode (mg/cm)
倒3
The 3rd from
the top
倒4
The 4th from
the top
倒3
The 3rd from
the top
倒4
The 4th from
the top
陆两优996
Luliangyou 996
N1 103.87a 53.49a 13.86a 6.06a 0.97b 14.11a 6.94a 27.76a 28.34a
N2 99.03b 53.13a 14.86a 6.17a 1.19a 13.68a 6.55a 27.80a 28.63a
N3 99.87b 52.44a 13.89a 6.28a 1.13a 13.23a 6.23a 28.26a 28.64a
株两优819
Zhuliangyou 819
N1 103.50a 45.80a 12.09a 6.02a 1.07a 11.05a 4.11a 31.44b 32.11b
N2 97.47b 45.10a 11.97a 5.94a 1.00a 8.82b 3.71a 37.48a 39.34a
N3 97.30b 43.80b 12.16a 5.91a 1.05a 10.06ab 4.20a 35.71a 32.99a
H优518
H you 518
N1 107.43a 46.84a 11.33b 5.96a 1.03b 12.39a 6.54a 20.51a 21.71b
N2 104.03b 43.13b 13.23a 6.20a 1.17a 11.87a 5.48b 20.89a 28.24a
N3 105.17ab 43.11b 12.00ab 5.94a 1.14a 11.19a 5.75b 20.67a 22.14b
盛泰优018
Shengtaiyou 018
N1 98.90a 40.42a 11.20a 5.95a 1.03b 8.25a 4.72a 22.09b 21.59b
N2 92.10b 39.71a 10.63a 5.82a 1.08a 7.89ab 4.45a 21.78b 23.05ab
N3 95.33b 37.83b 11.62a 6.36a 1.09a 7.22b 4.48a 26.42a 25.21a

表6

不同氮肥运筹条件下水稻茎秆物理性状(2020年)

品种
Variety
处理
Treatment
株高
Plant
height
(cm)
重心高度
Gravity
center
height
(cm)
单茎鲜重
Fresh
weight
per stem
(g)
茎秆粗度
Stem
diameter
(mm)
茎壁厚度
Stem wall
thickness
(mm)
节间长度
Length of internode (cm)
节间充实度
Fullness of internode (mg/cm)
倒3
The 3rd from
the top
倒4
The 4th from
the top
倒3
The 3rd from
the top
倒4
The 4th from
the top
陆两优996
Luliangyou 996
N1 87.77a 39.19a 8.23a 5.07a 1.12a 10.15a 4.88a 19.77b 28.55b
N2 87.27a 39.02a 9.73a 5.52a 1.24a 10.34a 4.74a 24.33a 31.13a
N3 86.00a 38.76a 9.62a 5.81a 1.21a 9.43a 4.61a 22.42a 32.71b
株两优819
Zhuliangyou 819
N1 88.00a 41.10a 7.50b 5.24a 1.02b 8.85a 4.46a 23.36b 26.17b
N2 85.67b 40.13a 7.97b 5.55a 1.16a 8.57a 4.43a 25.45a 33.01a
N3 85.93b 40.92a 9.03a 4.89a 0.98b 7.94a 4.40a 26.16a 33.20b
H优518
H you 518
N1 110.70a 53.80a 11.59a 6.57b 1.23b 12.40a 5.17a 20.84b 29.98a
N2 106.53b 53.19a 11.51a 7.03a 1.36a 12.30a 5.10a 21.63ab 32.69a
N3 105.70b 52.33a 11.10a 6.43b 1.20b 12.12a 4.36b 22.01a 30.79a
盛泰优018
Shengtaiyou 018
N1 95.27a 45.50a 9.67a 6.42ab 1.24a 8.72a 3.56a 21.77b 31.58b
N2 95.63a 45.46a 10.38a 6.67a 1.25a 8.44a 3.84a 25.44ab 37.08a
N3 93.70a 45.07a 9.85a 6.24b 1.33a 7.60a 3.12a 27.88a 33.54ab

表7

茎秆性状与茎秆抗折力、弯曲力矩及倒伏指数的相关系数

节间
Internode
相关系数
Correlation coefficient
株高
Plant
height
重心高度
Gravity center
height
单茎鲜重
Fresh weight
per stem
茎秆粗度
Stem
diameter
茎壁厚度
Stem wall
thickness
节间长度
Length of
internode
节间充实度
Fullness of
internode
倒3
The 3rd from
the top
抗折力 -0.0150 -0.0280 0.0409 0.1712 0.1005 -0.1832 -0.1726
弯曲力矩 0.7075** 0.5911** 0.9261** 0.5850** -0.2164 0.5133** 0.0205
倒伏指数 0.5015** 0.3890** 0.3455** 0.0987 -0.2100 -0.0047 -0.1303
倒4
The 4th from
the top
抗折力 -0.0609 -0.0130 0.2791 0.6700** 0.2813* -0.0345 0.3356**
弯曲力矩 0.7060** 0.6027** 0.9319** 0.5580** -0.2517 0.4356** -0.0215
倒伏指数 0.6471** 0.5556** 0.4205** 0.0259 -0.1260 -0.2176 0.1697
[1] 杨世民, 谢力, 郑顺林, 等. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. 作物学报, 2009, 35(1):93-103.
[2] 肖立, 罗俊英, 陈泽. 施氮量和栽插密度对杂交稻金优527抗倒伏能力的影响. 安徽农学通报(上半月刊), 2009, 15(9):153-155.
[3] 李国辉, 钟旭华, 田卡, 等. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46(7):1323-1334.
[4] 李娟, 黄平娜, 刘淑军, 等. 不同施肥模式对水稻生理特性、产量及其N肥农学利用率的影响. 核农学报, 2011, 25(1):169-173.
[5] Hossain K A, Horiuchi T, Miyagawa S. Effects of powdered rice chaff application on Si and N absorption,lodging resistance and yield in rice plants (Oryza sativa L.). Plant Production Science, 1999, 2(3):159-164.
doi: 10.1626/pps.2.159
[6] 徐富贤, 蒋鹏, 周兴兵, 等. 多效唑对杂交中稻不同密肥群体产量和抗倒伏性的影响. 核农学报, 2020, 34(5):1088-1096.
[7] 吴晓然, 丁艳锋, 张巫军, 等. 超级杂交籼稻抗倒能力比较及其对氮素的响应. 中国农业科学, 2015, 48 (14):2705-2717.
[8] 张忠旭, 陈温福, 杨振玉, 等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2):81-85.
[9] 田文涛, 邵平, 王燚, 等. 超级杂交稻茎秆形态结构及其与抗倒性的关系研究. 杂交水稻, 2017, 32(2):67-71,81.
[10] Pan J, Zhao J, Liu Y, et al. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical,mechanical,and molecular mechanisms. Scientific Reports, 2019, 9:20274.
doi: 10.1038/s41598-019-56620-7
[11] 胡江, 藤本宽, 郭龙彪, 等. 水稻抗倒力及相关抗倒伏性状的QTL分析. 中国水稻科学, 2008, 22(2):211-214.
[12] Zhang W, Wu L, Wu X, et al. Lodging resistance of Japonica rice (Oryza sativa L.):morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016, 9(1):31.
doi: 10.1186/s12284-016-0103-8
[13] Zhang W, Wu L, Ding Y, et al. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Journal of Plant Research, 2017, 130(5):859-871.
doi: 10.1007/s10265-017-0943-3
[14] 何巧林, 张绍文, 李应洪, 等. 硅钾配施对水稻茎秆性状和抗倒伏能力的影响. 杂交水稻, 2017, 32(1):66-73.
[15] 张丰转, 金正勋, 马国辉, 等. 灌浆成熟期粳稻抗倒伏性和茎鞘化学成分含量的动态变化. 中国水稻科学, 2010, 24(3):264-270.
[16] 邓接楼, 付国良, 晏燕花. 硅肥对水稻茎秆SiO2含量与抗折力的影响. 安徽农业科学, 2011, 39(5):2696-2698.
[17] 马国辉, 邓启云, 万宜珍, 等. 超级杂交稻抗倒生理与形态机能研究Ⅰ.培矮64S/E32与汕优63植株钾、硅和纤维素含量差异. 湖南农业大学学报(自然科学版), 2000, 26(5):329-331.
[18] 程慧煌, 易振波, 曾勇军, 等. 超级杂交稻抗倒伏能力及其对施肥量的响应. 核农学报, 2018, 32(8):1603-1610.
[19] 陈书强, 赵海新, 杜晓东, 等. 氮肥运筹对黑龙江省第三积温带水稻抗倒伏能力的影响. 华北农学报, 2015, 30(S1):390-394.
[20] 苏东行, 彭显龙, 罗盛国, 等. 氮肥管理对寒地水稻倒伏性能的影响. 黑龙江农业科学, 2012(9):39-42.
[21] 陈平平, 张小平, 吴小京, 等. 氮肥运筹对陆两优996产量形成与氮利用效率的影响. 中国农学通报, 2011, 27(5):238-242
[22] 杨艳华, 朱镇, 张亚东, 等. 不同水稻品种(系)抗倒伏能力与茎秆形态性状的关系. 江苏农业学报, 2011, 27(2):231-235.
[23] 李杰, 张洪程, 龚金龙, 等. 不同种植方式对超级稻植株抗倒伏能力的影响. 中国农业科学, 2011, 44(11):2234-2243.
[24] 谷海东, 赵宏伟, 刘洋, 等. 插秧密度对寒地粳稻抗倒伏能力的影响. 作物杂志, 2014(2):101-106.
[25] 苗智英, 邵光成, 房凯, 等. 不同水炭处理对水稻抗倒伏能力及产量的影响. 排灌机械工程学报, 2021, 39(2):193-199.
[26] 穆麒麟, 游艾青, 王松, 等. 适宜机械化栽培的水稻品种筛选研究. 杂交水稻, 2021, 36(2):45-51.
[27] 陈健晓, 屠乃美, 易镇邪, 等. 硅肥对超级早稻茎叶形态与抗倒伏特性的影响. 作物研究, 2011, 31(3):209-212.
[1] 冯常辉, 焦春海, 张友昌, 别墅, 秦鸿德, 王琼珊, 张教海, 王孝刚, 夏松波, 蓝家样, 陈全求. 基于部分NCII交配设计的陆地棉产量和纤维品质性状遗传分析[J]. 作物杂志, 2022, (5): 13–21
[2] 常海刚, 李广, 袁建钰, 谢明君, 祁小平. 不同施肥方式对甘肃陇中黄土丘陵区土壤养分及春小麦产量的影响[J]. 作物杂志, 2022, (5): 160–166
[3] 张玺, 谢晋, 黄浩, 高仁吉, 鲁超, 周意霖, 梁增发, 王维. 普洱烟区氮肥运筹及株距对烤烟品种云烟116产量和质量的影响[J]. 作物杂志, 2022, (5): 188–194
[4] 石必显, 陶建飞, 高燕, 谢会红, 阿卜力米提·艾尔肯, 程平山, 麦提图尔荪·萨迪克, 沙红. 不同种植密度对3个复播食葵品种植株形态及产量的影响[J]. 作物杂志, 2022, (5): 195–200
[5] 徐敏, 金路路, 李瑞春, 孙丽园, 王子胜. 辽河流域棉区棉花化学封顶技术应用研究[J]. 作物杂志, 2022, (5): 201–207
[6] 陶玥玥, 孙华, 王海候, 陆长婴, 沈明星. 刈割期与晾晒天数对饲料油菜产量和粗蛋白含量及水分的影响[J]. 作物杂志, 2022, (5): 215–220
[7] 张崇华, 段里成, 王尚明, 张清霞, 王成孜, 吴风雨, 杨林. 播期对江西晚稻产量及温光资源利用的影响[J]. 作物杂志, 2022, (5): 229–234
[8] 潘俊峰, 刘彦卓, 梁开明, 黄农荣, 彭碧琳, 傅友强, 胡香玉, 钟旭华, 李妹娟, 胡锐. 长期和短期减施磷肥对华南双季稻产量与磷肥利用的影响[J]. 作物杂志, 2022, (5): 241–248
[9] 李睿, 董立强, 商文奇, 于广星, 代贵金, 王铮, 李跃东. 水稻苗期不同喷淋间隔处理对其生长发育及产量的影响[J]. 作物杂志, 2022, (5): 249–254
[10] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[11] 唐建鹏, 陈京都, 温凯, 张明伟, 谢成林, 陆佩玲, 闵思桂, 王企銮, 成洁旻. 稻虾共作模式下不同优良食味粳稻物质生产及产量特征研究[J]. 作物杂志, 2022, (4): 115–123
[12] 孙庆圣, 原程, 张玉先. 减施氮肥和接种根瘤菌对黑大豆光合特性及产量的影响[J]. 作物杂志, 2022, (4): 132–137
[13] 谢奎忠, 孙小花, 罗爱花, 柳永强, 唐德晶, 朱永永, 胡新元. 基施锌肥对长期连作马铃薯抗病性相关酶活性、土传病害和产量的影响[J]. 作物杂志, 2022, (4): 154–159
[14] 李祖军, 姜雪, 杨通莲, 吴朝昕, 张习春, 江学海, 龙武华, 张玉珊, 朱速松. 不同肥料配比对贵州禾苟当1号产量及食味品质的影响[J]. 作物杂志, 2022, (4): 160–166
[15] 马珂, 冯雷, 赵夏童, 张丽光, 原向阳, 董淑琦, 郭平毅, 宋喜娥. 播距和播量对张杂谷10号生长特性及产量的影响[J]. 作物杂志, 2022, (4): 172–178
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!