作物杂志,2022, 第4期: 1–8 doi: 10.16035/j.issn.1001-7283.2022.04.001

• 专题综述 •    下一篇

高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展

周宇娇1,2(), 张伟杨1,2(), 杨建昌1,2   

  1. 1江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/扬州大学农学院,225009,江苏扬州
    2江苏省粮食作物现代产业技术协同创新中心/扬州大学,225009,江苏扬州
  • 收稿日期:2022-03-11 修回日期:2022-04-08 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 张伟杨
  • 作者简介:周宇娇,研究方向为水稻抗逆栽培与原理,E-mail: zhouyujiao1028@163.com
  • 基金资助:
    国家自然科学基金(31771710);国家自然科学基金(31901445)

Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines

Zhou Yujiao1,2(), Zhang Weiyang1,2(), Yang Jianchang1,2   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/ Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-03-11 Revised:2022-04-08 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhang Weiyang

摘要:

水稻光温敏核不育系开颖与雌蕊受精障碍是高温胁迫导致其制种产量降低的主要原因,阐明其机理并探究提高水稻光温敏核不育系耐热性的途径,对于减轻其高温伤害具有重要意义。本文综述了高温胁迫对水稻光温敏核不育系开颖、雌蕊受精以及影响抽穗的生理机制研究进展;并综述了激素与渗透调节和抗氧化系统的内在关系及其对高温胁迫下水稻光温敏核不育系开颖与雌蕊受精障碍的调控作用,展望了进一步探究高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍机理的研究方向,为提高两系杂交稻制种产量和指导水稻抗高温育种和栽培提供一定的理论依据。

关键词: 水稻, 光温敏核不育系, 高温, 开颖, 雌蕊受精

Abstract:

The reduction in seed yield of the “two-line-method” hybrid rice under high temperature (HT) stress during anthesis is attributable mainly to the impairment in spikelet-opening and/or pistil-fertilization. To reduce the detrimental impacts of HT stress on the photo-thermo-sensitive genic male sterile (PTSGMS) rice lines, its mechanism should be understood and methods to improve plant thermo-tolerance should be delved. In the publication, the physiological mechanisms of damage to the spikelet-opening, pistil-fertilization, and heading of the PTSGMS rice lines under HT stress were studied. In addition, summarized the intrinsic relationships between hormones and osmotic regulation, antioxidant system, as well as the regulation of the impairment in spikelet-opening and pistil-fertilization of the PTSGMS rice lines under HT stress. The research direction of molecular mechanism of the impairment in spikelet-opening and pistil-fertilization of the PTSGMS rice lines under HT stress is also prospected in this paper. The review may provide insights for improving seed yield of two-line hybrid rice and guiding cultivation and breeding of thermo-tolerance rice.

Key words: Rice, Photo-thermo-sensitive genic male sterile line, High temperature, Spikelet-opening, Pistil-fertilization

图1

茉莉酸类和油菜素甾醇缓解高温胁迫下水稻光温敏核不育系开颖和受精障碍的调控网络图 BZR1:油菜素甾醇信号转导的核心转录因子;MYC2:茉莉酸信号转导的核心转录因子。本图根据参考文献[6⇓⇓⇓-10,16,18,22⇓⇓⇓⇓⇓⇓-29]所作

[1] Yuan L P. Progress in super-hybrid rice breeding. The Crop Journal, 2017, 5(2):100-102.
doi: 10.1016/j.cj.2017.02.001
[2] 朱英国. 杂交水稻研究50年. 科学通报, 2016, 61(35):3740-3747.
[3] 郑兴飞, 董华林, 郭英, 等. 两系法杂交水稻的育种成就与展望. 作物研究, 2021, 35(5):509-513.
[4] 牟同敏. 中国两系法杂交水稻研究进展和展望. 科学通报, 2016, 61(35):3761-3769.
[5] 雷永群, 宋书锋, 李新奇. 水稻杂种优势利用技术的发展. 杂交水稻, 2017, 32(3):1-4,9.
[6] Chen J, Xu Y D, Fei K Q, et al. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Scientific Reports, 2020, 10(1):2210.
doi: 10.1038/s41598-020-59183-0
[7] Yang J C, Miao W Q, Chen J. Roles of jasmonates and brassinosteroids in rice responses to high temperature stress-A review. The Crop Journal, 2021, 9(5):966-985.
[8] Chen J, Fei K Q, Zhang W Y, et al. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines. The Crop Journal, 2021, 9(1):109-119.
doi: 10.1016/j.cj.2020.07.001
[9] Yang J C, Fei K Q, Chen J, et al. Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines. Food and Energy Security, 2020, 9(4):e233.
[10] 陈静. 高温胁迫下水稻光温敏核不育系开颖与受精障碍的机理及其调控. 扬州:扬州大学, 2021.
[11] 王忠. 水稻的开花与结实. 北京: 科学出版社, 2014.
[12] 王忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨——Ⅱ. CO2对水稻开颖的效应. 作物学报, 1989, 15(1):59-66,99.
[13] 王忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨——Ⅲ. 浆片的结构及其在开颖过程中内含物的变化. 作物学报, 1991, 17(2):96-101,161-162.
[14] 曾晓春, 周燮, 吴晓玉. 水稻颖花开放机理研究进展. 中国农业科学, 2004, 37(2):188-195.
[15] 王忠, 卢从明, 顾蕴洁, 等. 水稻开颖机理的探讨——Ⅰ. 温度对水稻开颖及花粉生活力的影响. 作物学报, 1988, 14(1):14-21.
[16] 何永明, 林拥军, 曾晓春. 水稻颖花自然开放过程中茉莉酸(JA)生物合成的变化. 作物学报, 2012, 38(10):1891-1899.
doi: 10.3724/SP.J.1006.2012.01891
[17] Zhang L, Zhang F, Maeli M, et al. Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany, 2017, 68(6):1371.
doi: 10.1093/jxb/erw478 pmid: 28069779
[18] Liu L, Zou Z S, Qian K, et al. Jasmonic acid deficiency leads to scattered floret opening time in cytoplasmic male sterile rice Zhenshan 97A. Journal of Experimental Botany, 2017, 68(16):4613-4625.
doi: 10.1093/jxb/erx251 pmid: 28981770
[19] Liu L, Li H X, Zeng H L, et al. Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation,membrane deterioration,and senescence-associated genes expression. Plant Growth Regulation, 2016, 35(2):366-376.
[20] Huang H, Liu B, Liu L Y, et al. Jasmonate action in plant growth and development. Journal of Experimental Botany, 2017, 68(6):1349-1359.
doi: 10.1093/jxb/erw495 pmid: 28158849
[21] 闫志强, 徐海, 马作斌, 等. 籼稻与粳稻花时对茉莉酸甲酯(MeJA)响应的敏感性差异. 中国农业科学, 2014, 47(13):2529-2540.
[22] 闫会转.JAZ2和JAZ7调控茉莉酸介导的转录与代谢重编程的机理研究. 杭州: 浙江大学, 2014.
[23] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15(1):63-78.
doi: 10.1105/tpc.006130
[24] Lehmann J, Atzorn R, Brückner C, et al. Accumulation of jasmonate,abscisic acid,specific transcripts and proteins in osmotically stressed barley leaf segments. Planta, 1995, 197(1):156-162.
[25] 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导. 植物生理学报, 2017, 53(3):291-307.
[26] Chauhan H, Khurana N, Agarwal P, et al. Heat shock factors in rice (Oryza sativa L.):genome-wide expression analysis during reproductive development and abiotic stress. Molecular Genetics and Genomics, 2011, 286(2):171-187.
doi: 10.1007/s00438-011-0638-8 pmid: 21792744
[27] Singh I, Shono M. Physiological and molecular effects of 24-epibrassinolide,a brassinosteroid on thermotolerance of tomato. Plant Growth Regulation, 2005, 47(2/3):111.
doi: 10.1007/s10725-005-3252-0
[28] Jin S H, Li X Q, Wang G G, et al. Brassinosteroids alleviate high-temperature injury in ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. Annals of Botany, 2015, 7:1-21.
doi: 10.1093/oxfordjournals.aob.a088522
[29] Li X, Wei J P, Ahammed G J, et al. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L.. Frontiers in Plant Science, 2018, 9:1016.
doi: 10.3389/fpls.2018.01016
[30] 吴超, 崔克辉. 高温影响水稻产量形成研究进展. 中国农业科技导报, 2014, 16(3):103-111.
[31] Tong L, Yoshida T. Can hot-water emasculation be applied to artificial hybridization of Indica-type cambodian rice?. Plant Production Science, 2008, 11(1):132-133.
doi: 10.1626/pps.11.132
[32] 曹云英, 段骅, 杨立年, 等. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34 (12):2134-2142.
doi: 10.3724/SP.J.1006.2008.02134
[33] Mukesh J, Prem S C, Kenneth J B, et al. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). Journal of Plant Physiology, 2010, 167(7):578-582.
doi: 10.1016/j.jplph.2009.11.007 pmid: 20044168
[34] Tang R S, Zheng J C, Jin Z Q, et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA,GAs and ABA in rice (Oryza sativa L.). Plant Growth Regulation, 2008, 54(1):37-43.
doi: 10.1007/s10725-007-9225-8
[35] Zinn K E, Tunc-Ozdemir M, Harper J F. Temperature stress and plant sexual reproduction:uncovering the weakest links. Journal of Experimental Botany, 2010, 61(7):1959-1968.
doi: 10.1093/jxb/erq053
[36] Qu L J, Li L, Lan Z J, et al. Peptide signalling during the pollen tube journey and double fertilization. Journal of Experimental Botany, 2015, 66(17):5139-5150.
doi: 10.1093/jxb/erv275 pmid: 26068467
[37] 贺立伟. 水稻雄性不育系柱头外露特性及其与花器性状的关系研究. 长沙:湖南农业大学, 2008.
[38] Prasad P V V, Djanaguiraman M. Response of floret fertility and individual grain weight of wheat to high temperature stress:Sensitive stages and thresholds for temperature and duration. Function in Plant Biology, 2014, 41(12):1261-1269.
doi: 10.1071/FP14061
[39] Marathi B, Jena K K. Floral traits to enhance outcrossing for higher hybrid seed production in rice:present status and future prospects. Euphytica, 2015, 201(1):1-14.
doi: 10.1007/s10681-014-1251-9
[40] Costa J, Castro S, Loureiro J, et al. Experimental insights on the function of ancillary pollen and stigma polymorphisms in plants with heteromorphic incompatibility. Evolution, 2017, 71(1):121-134.
doi: 10.1111/evo.13082
[41] Zhou H, Li P B, Xie W B, et al. Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Molecular Plant, 2017, 10(4):634-644.
doi: S1674-2052(17)30002-3 pmid: 28110091
[42] Zhang K Q, Zhang Y X, Wu W X, et al. qSE7 is a major quantitative trait locus (QTL) influencing stigma exsertion rate in rice (Oryza sativa L). Scientific Reports, 2018, 8(1):14523.
doi: 10.1038/s41598-018-32629-2
[43] Zafra A, Rejón D J, Hiscock S J, et al. Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in Plant Reproduction. Frontiers in Plant Science, 2016, 7(465):1112.
[44] Kelliher T, Walbot V. Hypoxia triggers meiotic fate acquisition in maize. Science, 2012, 337(6092):345-358.
doi: 10.1126/science.1220080 pmid: 22822150
[45] Zhang C X, Li G Y, Chen T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11(1):14.
doi: 10.1186/s12284-018-0206-5
[46] Hoang T V, Vo K T X, Rahman M M, et al. Heat stress transcription factor OsSPL 7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Science, 2019, 289:110273.
doi: 10.1016/j.plantsci.2019.110273
[47] Somoza S C, Sede A R, Boccardo N A, et al. Keeping up with the RALFs:how these small peptides control pollen-pistil interactions in Arabidopsis. New Phytologist, 2020, 229(1):14-18.
doi: 10.1111/nph.16817
[48] Prado A M, Colao R, Moreno N, et al. Targeting of pollen tubes to ovules is dependent on nitric oxide(NO) signaling. Molecular Plant, 2008, 1(4):703-714.
doi: 10.1093/mp/ssn034
[49] Johnson M A, Harper J F, Palanivelu R. A fruitful journey:pollen tube navigation from germination to fertilization. Annual Review of Plant Biology, 2019, 70(1):809-837.
doi: 10.1146/annurev-arplant-050718-100133
[50] Snider J L, Oosterhuis D M. How does timing,duration,and severity of heat stress influence pollen-pistil interactions in angiosperms. Plant Signaling and Behavior, 2011, 6(7):930-933.
doi: 10.4161/psb.6.7.15315 pmid: 21628998
[51] Jiang N, Yu P H, Fu W M, et al. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant,Cell and Environment, 2020, 43(5):1273-1287.
doi: 10.1111/pce.13733
[52] Wang Y Y, Impa S M, Sunkar R, et al. The neglected other half‐role of the pistil in plant heat stress responses. Plant,Cell and Environment, 2021, 44(7):2200-2210.
doi: 10.1111/pce.14067
[53] Anwar A, Liu Y M, Dong R R, et al. The physiological and molecular mechanism of brassinosteroid in response to stress:a review. Biological Research, 2018, 51(1):46.
doi: 10.1186/s40659-018-0195-2 pmid: 30419959
[54] Zhang W Y, Zhu K Y, Wang Z Q, et al. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology, 2019, 61(8):943-963.
doi: 10.1111/jipb.12722
[55] Zhang W Y, Sheng J Y, Fu L D, et al. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environmental and Experimental Botany, 2020, 169,103887.
doi: 10.1016/j.envexpbot.2019.103887
[56] Li G Y, Zhang C X, Zhang G H, et al. Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis. Rice, 2020, 13(1):18.
doi: 10.1186/s12284-020-00379-3
[57] Kurepin L V, Qaderi M M, Back T G, et al. A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regulation, 2008, 55(3):165-167.
doi: 10.1007/s10725-008-9276-5
[58] Manoli A, Trevisan S, Quaggiotti S, et al. Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses in Zea mays L.. Plant Growth Regulation, 2018, 84:423-436.
doi: 10.1007/s10725-017-0350-8
[59] Divi U K, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid,ethylene and salicylic acid pathways. BMC Plant Biology, 2010, 10:151.
doi: 10.1186/1471-2229-10-151
[60] 袁隆平. 杂交水稻学. 北京: 中国农业出版社, 2002.
[61] Liang M Z, Deng L X, Liu J F, et al. Interaction between the eui gene and thermo-sensitive genic male sterility in rice. Euphytica, 2008, 164(3):637-643.
doi: 10.1007/s10681-008-9657-x
[62] Yin C X, Gan L J, Ng D, et al. Decreased panicle-derived indole-3-acetic acid reduces gibberellin A 1 level in the uppermost internode,causing panicle enclosure in male sterile rice Zhenshan 97A. Journal of Experimental Botany, 2007, 58(10):2441.
doi: 10.1093/jxb/erm077
[63] Das S, Krishnan P, Nayak M, et al. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 2014, 101:36-46.
doi: 10.1016/j.envexpbot.2014.01.004
[64] Jagadish S V K, Muthurajan R, Rang Z W, et al. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice, 2011, 4:1-11.
doi: 10.1007/s12284-011-9059-x
[65] Guan H Z, Duan Y L, Liu H Q, et al. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (Oryza sativa L.). Chinese Science Bulletin, 2011, 56(14):1476-1480.
doi: 10.1007/s11434-011-4552-9
[66] 孙琦, 赵志超, 张瑾晖, 等. 水稻包穗突变体sui2的遗传分析和基因精细定位. 作物学报, 2020, 46(11):1734-1742.
[67] 宋平. 水稻矮生性和开花的植物激素调控. 南京:南京农业大学, 2000.
[68] 靳西彪. 水稻同核异质雄性不育系包颈的发生与其内源激素及同工酶关系的研究. 成都:四川农业大学, 2008.
[69] 季兰, 杨仁崔. 水稻茎伸长生长与植物激素. 植物学通报, 2002, 19(1):109-115.
[70] 梅凯华, 周强, 涂军明, 等. 两系杂交中籼新组合广两优16高产制种技术. 杂交水稻, 2013, 28(5):29-31.
[71] 陈庭木, 潘启民, 王宝祥, 等. 耐热抗倒两系杂交中籼新组合广两优矮93的选育. 杂交水稻, 2014, 29(5):19-21.
[72] 夏兴旺, 石泽汉, 王杰. 两系杂交中稻新组合Y两优488高产优质制种技术. 杂交水稻, 2014, 29(5):29-31.
[73] 文民操, 苏阳日, 郑乐华, 等. 两系杂交稻新组合Y两优750在海南高产制种技术. 杂交水稻, 2014, 29(6):30-31.
[74] 杨益善, 龚俊义, 田继微, 等. 水稻不育系抽穗包颈性状的遗传研究. 分子植物育种, 2015, 13(10):2163-2173.
[75] Rutger J N, Camahan H L. A fourth genetic element to facilitate hybrid cereal productions recessive tall in rice. Crop Science, 1981, 21(3):373-376.
doi: 10.2135/cropsci1981.0011183X002100030005x
[76] 杨仁崔, 张书标, 黄荣华, 等. 高秆隐性杂交稻(e-杂交稻)的育种技术. 中国农业科学, 2002, 35(3):233-237.
[77] Ma H L, Zhang S B, Ji L, et al. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice. Plant Molecular Biology, 2006, 60(l):87-94.
[78] Gao S P, Fang J, Xu F, et al. Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. The Plant Cell, 2016, 28(3):680-695.
doi: 10.1105/tpc.15.01021
[79] 王亚坤. 微调EUI1对水稻不育系解除包颈的机理及应用研究. 北京: 中国农业科学院, 2021.
[80] 闫川, 丁艳锋, 王强盛, 等. 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响. 作物学报, 2008, 34(12):2176-2183.
doi: 10.3724/SP.J.1006.2008.02176
[81] 张伟杨. 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制. 扬州:扬州大学, 2018.
[82] Liu K, Deng J, Lu J, et al. High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage. Frontiers in Plant Science, 2019, 10:357.
doi: 10.3389/fpls.2019.00357 pmid: 30972091
[83] 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6):591-602.
[84] 宋忠华, 庞冰, 刘厚敖, 等. 灌水深度对杂交稻生产中高温危害的缓解效果初探. 杂交水稻, 2006, 21(2):72-73.
[85] Weerakoon W, Maruyama A, Ohba K. Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 2008, 194(2):135-140.
doi: 10.1111/j.1439-037X.2008.00293.x
[86] 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用. 作物学报, 2012, 38(1):107-120.
[87] 段骅. 高温与干旱对水稻产量和品质的影响及其生理机制. 扬州:扬州大学, 2013.
[88] 徐国伟, 赵喜辉, 江孟孟, 等. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27(8):1388-1396.
[89] Zhang W Y, Sheng J Y, Xu Y J, et al. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology, 2019, 19:409.
doi: 10.1186/s12870-019-2025-2
[90] Acharjee T K, Halsema G V, Ludwig F, et al. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agricultural Systems, 2019, 168:131-143.
doi: 10.1016/j.agsy.2018.11.006
[91] Ding Y M, Wang W G, Zhuang Q L, et al. Adaptation of paddy rice in China to climate change:The effects of shifting sowing date on yield and irrigation water requirement. Agricultural Water Management, 2019, 228:105890.
doi: 10.1016/j.agwat.2019.105890
[92] Perondi D, Fraisse C W, Staub C G, et al. Crop season planning tool:adjusting sowing decisions to reduce the risk of extreme weather events. Computers and Electronics in Agriculture, 2019, 156:62-70.
doi: 10.1016/j.compag.2018.11.013
[93] Chen Y H, Chen H Z, Xiang J, et al. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition. Environmental and Experimental Botany, 2021, 190:104585.
doi: 10.1016/j.envexpbot.2021.104585
[94] 徐俊豪, 解嘉鑫, 熊若愚, 等. 播期对南方双季晚籼稻温光资源利用、产量及品质形成的影响. 中国稻米, 2021, 27(5):115-120.
doi: 10.3969/j.issn.1006-8082.2021.05.025
[95] 成臣, 黎星, 谭雪明, 等. 播期对南方优质晚粳稻产量及稻米品质的调控效应研究. 中国稻米, 2018, 24(5):58-63.
doi: 10.3969/j.issn.1006-8082.2018.05.012
[96] 黄俊宝, 何永明, 曾晓春, 等. 水稻颖花开放前花器官茉莉酸水平变化及浆片茉莉酸信号基因表达分析. 中国农业科学, 2015, 48(6):1219-1227.
[97] Liu D P, Yu Z K, Zhang G X, et al. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiology, 2021, 187(4):2563-2576.
doi: 10.1093/plphys/kiab394
[1] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[2] 郑思怡, 杨晔, 宋远辉, 花芹, 林泉祥, 张海涛, 程治军. 水稻甜质胚乳突变体m5788的鉴定及基因定位[J]. 作物杂志, 2022, (4): 14–21
[3] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[4] 张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响[J]. 作物杂志, 2022, (4): 255–261
[5] 高捷, 李思宇, 成大宇, 张杏雨, 顾希, 刘立军. 缓控释肥对水稻产量与品质影响的研究进展[J]. 作物杂志, 2022, (3): 20–26
[6] 杜海萌, 韦还和, 余清源, 戴其根. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022, (3): 33–38
[7] 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 22–27
[8] 韩丽君, 薛张逸, 谢昊, 顾骏飞. 干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响[J]. 作物杂志, 2022, (2): 222–229
[9] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[10] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[11] 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124–129
[12] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[13] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[14] 段琉颖, 吴婷, 李霞, 谢建坤, 胡标林. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022, (1): 20–30
[15] 李旭, 付立东, 王宇, 隋鑫, 任海, 吕小红, 马畅, 杜萌, 毛艇. DEP1NRT1.1B基因的遗传互作对水稻氮素利用的影响[J]. 作物杂志, 2021, (6): 22–27
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!