作物杂志,2022, 第2期: 222–229 doi: 10.16035/j.issn.1001-7283.2022.02.031

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响

韩丽君1,2(), 薛张逸1,2, 谢昊1,2, 顾骏飞1,2,*()   

  1. 1江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/扬州大学农学院,225009,江苏扬州
    2江苏省粮食作物现代产业技术协同创新中心/扬州大学,225009,江苏扬州
  • 收稿日期:2021-10-20 修回日期:2021-12-16 出版日期:2022-04-15 发布日期:2022-04-24
  • 通讯作者: 顾骏飞
  • 作者简介:韩丽君,研究方向为水稻栽培与生理,E-mail: 1321223850@qq.com
  • 基金资助:
    国家自然科学基金(31872853);江苏高校优势学科建设工程(PAPD)

Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties

Han Lijun1,2(), Xue Zhangyi1,2, Xie Hao1,2, Gu Junfei1,2,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-20 Revised:2021-12-16 Online:2022-04-15 Published:2022-04-24
  • Contact: Gu Junfei

摘要:

探明干湿交替灌溉与硝化抑制剂对水稻产量以及土壤性状的影响,以期为水稻高效栽培提供理论依据和技术参考。采取干湿交替灌溉方式,以“金香玉1号”和“扬稻6号”为试验材料,设置4个处理,分别为尿素(CK)、尿素+双氰胺(DCD)、尿素+3,4-二甲基吡唑磷酸盐(DMPP)、尿素+DCD+DMPP。DCD和DMPP为硝化抑制剂。结果表明,在相同灌溉方式下,与CK处理相比,硝化抑制剂的添加有利于获得较高的产量,提高了穗粒数和结实率。与CK处理相比,添加DCD、DMPP以及DCD与DMPP配施,均提高了水稻生育时期的土壤脲酶和蔗糖酶活性,降低了水稻生育时期土壤硝酸还原酶活性。另外,各硝化抑制剂处理均显著提高了水稻生育时期土壤铵态氮含量,降低了硝态氮含量,在此基础上增加了土壤有效态氮含量。其中DMPP抑制效果优于DCD,且2种抑制剂同时配施作用效果优于其单独施用。在干湿交替灌溉方式下,硝化抑制剂处理在水稻关键生育期有利于产生较高土壤养分,能进一步增加水稻产量。

关键词: 水稻, 硝化抑制剂, 土壤性状, 产量

Abstract:

The impacts of dry-wet alternate irrigation and nitrification inhibitors on rice yield and soil properties were investigated for providing theoretical foundation and technical reference for efficient rice cultivation. The dry-wet alternate irrigation method was adopted, with “Jinxiangyu 1” and “Yangdao 6” as the test materials, and four treatments were set up, urea (CK), urea+DCD, urea+DMPP, and urea+DCD+DMPP, the nitrification inhibitors were DCD and DMPP. The results indicate that under the same irrigation method, compared with CK treatment, the inclusion of nitrification inhibitor had a higher yield owing to its higher number of grains per panicle and seed setting rate. Compared with CK treatment, the inclusion of DCD, DMPP and the combined use of DCD and DMPP increased the activity of soil urease and invertase, while decreased the activity of soil nitrate reductase during the growth period of rice. In addition, various nitrification inhibitors the treatments significantly increased soil ammonium nitrogen (NH4+-N) during the growing season of rice and reduced nitrate nitrogen (NO3--N) levels and on this basis increased soil available nitrogen levels. Among them, the inhibitory effect of DMPP was better than that of DCD, and the combined effect of the two inhibitors at the same time was better than that of their single use. In general, the nitrification inhibitor treatment had higher soil nutrients during the key growth period of rice under the condition of dry-wet alternate irrigation, which could further increase rice yield.

Key words: Rice, Nitrification inhibitor, Soil properties, Yield

表1

硝化抑制剂对水稻产量及其构成因素的影响

品种
Variety
处理
Treatment
每盆穗数
Number of panicles per pot
穗粒数
Spikelets per panicle
结实率
Filled grains rate (%)
千粒重
1000-grain weight (g)
产量(g/盆)
Yield (g/pot)
YD 6 CK 20.0b 157.9c 86.3b 28.6a 77.9c
DCD 20.7ab 160.4b 87.1a 28.3b 81.8b
DMPP 21.0a 161.4b 87.6a 28.3b 84.1b
DCD+DMPP 21.3a 161.7a 87.8a 28.4b 86.1a
JXY 1 CK 22.0b 143.7c 84.5b 26.3a 70.3c
DCD 22.5b 147.7b 85.4a 25.8b 72.9b
DMPP 23.3a 149.0b 85.5a 25.7b 75.8b
DCD+DMPP 23.6a 152.6a 85.6a 25.6b 77.7a

表2

硝化抑制剂对水稻品种各生育期的干物质重及作物生长速率的影响

品种
Variety
处理
Treatment
干物质重(g/盆)
Dry matter weight (g/pot)
生长速率[g/(盆?d)]
Growth rate [g/(pot?d)]
分蘖中期
Mid-tillering (MT)
拔节期
Jointing (J)
抽穗期
Heading (H)
成熟期
Maturity (M)
分蘖期―拔节期
(T-J)
拔节期―抽穗期
(J-H)
抽穗期―成熟期
(H-M)
YD 6 CK 17.6c 50.6c 91.2c 155.6c 1.57c 2.14c 1.22c
DCD 18.7b 63.2b 105.4b 172.1b 2.11b 2.24b 1.30b
DMPP 19.1a 65.2b 108.5a 176.8a 2.19b 2.27b 1.34ab
DCD+DMPP 19.5a 68.1a 110.2a 179.9a 2.31a 2.81a 1.36a
JXY 1 CK 16.4c 47.1c 85.5c 140.5d 1.46c 2.02c 1.07c
DCD 17.5b 59.5b 100.6b 160.7c 2.01b 2.16b 1.17b
DMPP 17.8b 61.8b 104.1b 166.8b 2.10b 2.22a 1.22a
DCD+DMPP 18.0a 64.3a 107.9a 172.9a 2.20a 2.29a 1.27a

图1

硝化抑制剂对不同水稻品种各生育期的叶片SPAD值的影响

图2

硝化抑制剂对不同水稻品种 各生育期的土壤pH的影响

图3

硝化抑制剂对不同水稻品种各生育期的土壤全氮含量的影响 不同小写字母表示在0.05水平上差异显著,下同

图4

硝化抑制剂对不同水稻品种各生育期的土壤NO3--N含量的影响

图5

硝化抑制剂对不同水稻品种各生育期的土壤NH4+-N含量的影响

图6

硝化抑制剂对不同水稻品种各生育期的土壤有效氮含量的影响

图7

硝化抑制剂对不同水稻品种各生育期的土壤脲酶、蔗糖酶和硝酸还原酶活性的影响

[1] Xu J Z, Peng S Z, Yang S H, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agricultural Water Management, 2012, 104:184-192.
doi: 10.1016/j.agwat.2011.12.013
[2] 姚单君, 张爱华, 杨爽, 等. 新型氮肥对水稻产量养分积累及吸收利用的影响. 西南农业学报, 2018, 31(10):2121-2126.
[3] 肖雪玉, 朱文博, 杨丹, 等. 施用控释氮肥对早稻田面水氮素动态变化和水稻产量的影响. 生态环境学报, 2018, 27(12):2252-2257.
[4] 徐国伟, 陆大克, 刘聪杰, 等. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7):137-146.
[5] 顾俊荣, 董明辉, 赵步洪, 等. 不同水氮管理对水稻干物质积累和茎鞘物质运转及产量的影响. 核农学报, 2016, 30(2):347-354.
[6] 殷建祯, 俞巧钢, 符建荣, 等. 不同作用因子下有机无机配施添加DMPP对氮素转化的影响. 土壤学报, 2013, 50(3):574-583.
[7] 李杰, 石元亮, 王玲莉, 等. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响. 植物营养与肥料学报, 2019, 25(12):2095-2101.
[8] 郭俊丽, 刘毅, 魏文学, 等. 双氰胺和3,4-二甲基吡唑磷酸盐对蔬菜种植土壤氨氧化细菌和古菌的影响. 环境科学, 2019, 40(11):5142-5150.
[9] 付景, 刘洁, 曹转勤, 等. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40(6):1056-1065.
[10] 俞巧钢, 胡若兰, 叶静, 等. 增效剂对稻田田面水氮素转化及水稻产量的影响. 水土保持学报, 2019, 33(6):288-292.
[11] Sah R N, Mikkelsen D S. Availability and utilization of fertilizer nitrogen by rice under alternate flooding:I. Kinetics of available nitrogen under rice culture. Plant and Soil, 1983, 75(2):221-226.
doi: 10.1007/BF02375567
[12] Eriksen A B, Kjeldby M, Nilsen S. The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea. Plant and Soil, 1985, 84(3):387-401.
doi: 10.1007/BF02275476
[13] 许阳东, 朱宽宇, 章星传, 等. 绿色超级稻品种的农艺与生理性状分析. 作物学报, 2019, 45(1):70-80.
doi: 10.3724/SP.J.1006.2019.82036
[14] 张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012.
[15] Tabatabai M A. Augle S, Bottomly P J, et al. Enzymes Methods of Soil Analysis//Weaver R W,Augle S,Bottomly P J,et al. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America Madison, 1994:775-833.
[16] Gander L K, Hendricks C W, Doyle J D. Interferences,limitations,and an improvement in the extraction and assessment of cellulase activity in soil. Soil Biology and Biochemistry, 1994, 26(1):65-73.
doi: 10.1016/0038-0717(94)90196-1
[17] Yu D, Boughton B A, Hill C B, et al. Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Frontiers in Plant Science, 2020, 11:1.
doi: 10.3389/fpls.2020.00001
[18] 刘欢, 陈苗苗, 孙志梅, 等. 氮肥调控对小麦/玉米产量、氮素利用及农田氮素平衡的影响. 华北农学报, 2016, 31(1):232-238.
[19] Abrera M L, Kissel D E, Bock B R. Urea hydrolysis in soil:Effects of urea concentration and soil pH. Soil Biology and Biochemistry, 1991, 23(12):1121-1124.
doi: 10.1016/0038-0717(91)90023-D
[20] 李婷婷. 干湿交替灌溉对水稻土壤性状、根系生长和产量形成的影响. 扬州:扬州大学, 2020.
[21] 张妹婷, 石美, 梁东丽, 等. 不同硝化抑制剂对尿素转化的影响. 西北农林科技大学学报, 2011, 39(2):178-184.
[22] Serna M, Legaz F, Primo-Millo E. Improvement of the N fertiliser efficiency with dicyandiamide (DCD) in citrus trees. Fertilizer Research, 1995, 43(1):137-142.
doi: 10.1007/BF00747693
[23] Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. Microbiology Ecology, 2010, 72(3):386-394.
doi: 10.1111/j.1574-6941.2010.00861.x
[24] Cookson W R, Cornforth I S. Dicyandiamide slows nitrification in dairy cattle urine patches:effects on soil solution composition,soil pH and pasture yield. Soil Biology and Biochemistry, 2002, 34(10):1461-1465.
doi: 10.1016/S0038-0717(02)00090-1
[25] 华建峰, 蒋倩, 施春健, 等. 脲酶/硝化抑制剂对土壤脲酶活性、有效态氮及春小麦产量的影响. 土壤通报, 2008, 39(1):94-99.
[26] 刘亚军. 马铃薯不同间作模式对作物与土壤的影响. 银川:宁夏大学, 2017.
[27] 马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性. 中国沙漠, 2019, 39(6):159-166.
[1] 王健, 许爱玲, 杨娜, 王珂, 席吉龙, 卫晓东, 张建诚, 席天元. 运城盆地不同播期小麦干热风发生风险评价[J]. 作物杂志, 2022, (2): 104–112
[2] 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119–126
[3] 周煜庄, 王瑞, 姚照胜, 张伟军, 刘涛, 孙成明. 不同土壤表面结构对小麦生长发育及产量的影响[J]. 作物杂志, 2022, (2): 127–133
[4] 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同品质类型小麦产量及光合性能的影响[J]. 作物杂志, 2022, (2): 134–142
[5] 曹丽茹, 鲁晓民, 王国瑞, 党尊, 邱天, 邱建军, 田云峰, 王振华, 党永富. 叶面喷施炭吸附聚谷氨酸对玉米生长发育的影响[J]. 作物杂志, 2022, (2): 158–166
[6] 袁璟亚, 李万明, 庞雪芹, 黄淋华, 戚兰, 王胜谋, 谢正伟, 邱一彪, 赖泉淏, 秦娜娜. 花期不同打尖层数对蚕豆农艺性状及产量的影响[J]. 作物杂志, 2022, (2): 167–173
[7] 刘攀锋, 秦杰, 郝爽楠, 王丹立, 杨武德, 冯美臣, 宋晓彦. 硒肥浓度、施用时期和施肥方式对不同谷子品种产量和籽粒硒含量的影响[J]. 作物杂志, 2022, (2): 182–188
[8] 郭永新, 周浩, 孙鹏, 王雅情, 马珂, 李晓瑞, 董淑琦, 郭平毅, 原向阳. 种植方式对不同地区张杂谷10号抗倒伏特性及产量的影响[J]. 作物杂志, 2022, (2): 195–202
[9] 李丰, 高桐梅, 苏小雨, 魏利斌, 王东勇, 田媛, 李同科, 杨自豪, 卫双玲. 施氮量和种植密度对芝麻光合速率、产量和氮肥利用率的影响[J]. 作物杂志, 2022, (2): 215–221
[10] 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 22–27
[11] 房孟颖, 闫鹏, 卢霖, 王庆燕, 董志强. 乙矮合剂对不同氮水平夏玉米氮代谢及产量的调控效应[J]. 作物杂志, 2022, (2): 96–103
[12] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[13] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[14] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[15] 何宇轩, 李雅娟, 周明卓, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下施用过氧化钙对南方双季稻产量和稻田温室气体排放的影响[J]. 作物杂志, 2022, (1): 116–123
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!