作物杂志,2022, 第4期: 9–13 doi: 10.16035/j.issn.1001-7283.2022.04.002

• 专题综述 • 上一篇    下一篇

马铃薯块茎发育的四大调控途径

陈玉珍1(), 唐广彬2, 马宪新2, 田贵云2, 于宏心2, 骆璎珞2, 樊明寿3, 贾立国3()   

  1. 1呼和浩特民族学院化学与环境学院,010051,内蒙古呼和浩特
    2呼伦贝尔农垦谢尔塔拉农牧场有限公司,021012,内蒙古呼伦贝尔
    3内蒙古农业大学农学院,010019,内蒙古呼和浩特
  • 收稿日期:2021-08-10 修回日期:2022-06-08 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 贾立国
  • 作者简介:陈玉珍,主要从事植物生理和水资源安全研究,E-mail: chenyuzhen818@126.com
  • 基金资助:
    中央引导地方基金项目(2020ZY0006);内蒙古重大专项(2020ZD0005);内蒙古重大专项(2021ZD0005);内蒙古自治区高等学校科学技术研究项目(NJZY21220)

Four Major Regulatory Pathways of Potato Tuber Development

Chen Yuzhen1(), Tang Guangbin2, Ma Xianxin2, Tian Guiyun2, Yu Hongxin2, Luo Yingluo2, Fan Mingshou3, Jia Liguo3()   

  1. 1College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, Inner Mongolia, China
    2Hulun Buir Agricultural Reclamation Sheltara Farm Co., Ltd., Hulun Buir 021012, Inner Mongolia, China
    3College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-08-10 Revised:2022-06-08 Online:2022-08-15 Published:2022-08-22
  • Contact: Jia Liguo

摘要:

马铃薯块茎作为收获器官,其发育过程及机制是重要的生物学问题。本文在总结大量前人研究的基础上,提出了调控马铃薯块茎发育的四大主要途径,包括蔗糖代谢(信号)调控、光周期调控、激素调控和水肥调控途径。在对四大主要途径的研究进展总结的基础上,提出了马铃薯块茎发育调控的研究方向。

关键词: 马铃薯, 块茎发育, 调控

Abstract:

Tuber is harvesting organ, whose development and regulatory mechanism represent a significant biological challenge. Four primary regulatory pathways, comprising sucrose signalling, photoperiod, phytohormone, water and nutrition regulation, were proposed after gathering and analysing a large body of literature. The subsequent study direction was proposed based on the research progress of four primary regulatory pathways.

Key words: Potato, Tuber development, Regulation

[1] Zierer W, Rüscher D, Sonnewald U, et al. Tuber and tuberous root development. Annual Review of Plant Biology, 2021, 72(1):551-580.
doi: 10.1146/annurev-arplant-080720-084456
[2] 单建伟, 柳俊, 索海翠, 等. 糖信号调控马铃薯块茎发育的研究进展. 华中农业大学学报, 2021, 40(4):45-53.
[3] Plantenga F, Bergonzi S, Abelenda J A, et al. The tuberization signal StSP6A represses flower bud development in potato. Journal of Experimental Botany, 2019, 70(3):937-948.
doi: 10.1093/jxb/ery420 pmid: 30481308
[4] 石永春, 王旭, 王潇然, 等. 蔗糖信号调控植物生长和发育的研究进展. 植物生理学报, 2019, 55(11):1579-1586.
[5] 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展. 中国农业科学, 2013, 46(22):4657-4664.
[6] Garner N, Jennet B. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Annals of Botany, 1989(6):663-674.
[7] 梁俊梅, 贾立国, 段玉, 等. 模拟干旱胁迫对马铃薯组培苗发育及试管薯形成的影响. 分子植物育种, 2020, 18(5):1617-1625.
[8] 孙梦遥. 糖对马铃薯微型薯诱导机制的研究. 兰州:兰州理工大学, 2016.
[9] Debast S, Nunes-Nesi A, Hajirezaei M R, et al. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiology, 2011, 156(4):1754-1771.
doi: 10.1104/pp.111.179903
[10] Chen L Q, Qu X Q, Hou B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335:207-211.
doi: 10.1126/science.1213351
[11] Riesmeier J W, Willmitzer L, Frommer W B. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO Journal, 1994, 13:1-7.
doi: 10.1002/j.1460-2075.1994.tb06229.x pmid: 8306952
[12] Chincinska I A, Liesche J, Krugel U, et al. Sucrose transporter StSUT 4 from potato affects flowering,tuberization,and shade avoidance response. Plant Physiology, 2008, 146(2):515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796
[13] Viola R, Roberts A G, Haupt S, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell, 2001, 13:385-398.
pmid: 11226192
[14] Zrenner R, Salanoubat M, Willmitzer L, et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant Journal, 1995, 7:97-107.
pmid: 7894514
[15] Ferreira S J, Senning M, Sonnewald S, et al. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics, 2010, 11(1):1-17.
doi: 10.1186/1471-2164-11-1
[16] Chapman H W. Tuberization in the potato plant. Physiologia Plantarum, 1958, 11:215-224.
doi: 10.1111/j.1399-3054.1958.tb08460.x
[17] Abelenda J A, Navarro C, Prat S. Flowering and tuberization:a tale of two night shades. Trends in Plant Science, 2014, 19(2):115-122.
doi: 10.1016/j.tplants.2013.09.010 pmid: 24139978
[18] Turck F, Fornara F, Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology, 2008, 59(1):573-594.
doi: 10.1146/annurev.arplant.59.032607.092755
[19] Navarro C, Abelenda J A, Cruz-Oro E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478:119-122.
doi: 10.1038/nature10431
[20] Sharma P, Lin T, Hannapel D J. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiology, 2016, 170:310-324.
doi: 10.1104/pp.15.01314 pmid: 26553650
[21] Lehretz G G, Sonnewald S, Hornyik C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology, 2019, 29:1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391
[22] Abelenda J A, Bergonzi S, Oortwijn M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 2019, 29:1178-1186.
doi: S0960-9822(19)30157-5 pmid: 30905604
[23] Chen H, Rosin F M, Prat S. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiology. 2003, 132:1391-1404.
pmid: 12857821
[24] Cho S K, Sharma P, Butler N M, et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA. Journal of Experimental Botany, 2015, 66(21):6835-6847.
doi: 10.1093/jxb/erv389
[25] Mahajan A, Bhogale S, Kang I H, et al. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Molecular Biology, 2012, 79(6):595-608.
doi: 10.1007/s11103-012-9931-0 pmid: 22638904
[26] Yumul R E, Kim Y J, Liu X, et al. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network. PLoS Genetics, 2013, 9(1):e1003218.
doi: 10.1371/journal.pgen.1003218
[27] Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136:2873-2881.
doi: 10.1242/dev.031658
[28] Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology, 2014, 164:1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688
[29] Okazawa Y. Studies on the relation between the tuber formation of potato and its natutal gibberellin content. Japanese Journal of Crop Science, 1960, 29(1):121-124.
doi: 10.1626/jcs.29.121
[30] Xu X, van Lammeren A A M, Vermeer E, et al. The role of gibberellin,abscisic acid,and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998, 117:575-584.
pmid: 9625710
[31] Carrera E, Bou J, García-Martínez J L, et al. Changes in GA 20-oxidase gene expression strongly affect stem length,tuber induction and tuber yield of potato plants. Plant Journal, 2010, 22(3):247-256.
doi: 10.1046/j.1365-313x.2000.00736.x
[32] Kloosterman B, Navarro C, Bijsterbosch G, et al. StGA2ox 1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant Journal, 2010, 52(2):362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[33] Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 2012, 63(12):4539-4547.
doi: 10.1093/jxb/ers132 pmid: 22689826
[34] Romanov G A, Aksenova N P, Konstantinova T N, et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regulation, 2000, 32(2/3):245-251.
doi: 10.1023/A:1010771510526
[35] Tao G Q, Stuart D, Yong J, et al. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Functional Plant Biology, 2010, 37(1):43-54.
doi: 10.1071/FP07032
[36] 蒙美莲, 刘梦芸, 门福义, 等. 赤霉素和脱落酸对马铃薯块茎形成的影响. 马铃薯杂志, 1994, 8(3):134-137.
[37] Vreugdenhil D, Bradshaw J, Gebhardt C, et al. Potato biology and biotechnology:advances and perspectives. Amsterdam: Elsevier, 2007.
[38] Deblonde P, Ledent J F. Effects of moderate drought conditions on green leaf number,stem height,leaf length and tuber yield of potato cultivars. European Journal of Agronomy, 2001, 14(1):31-41.
doi: 10.1016/S1161-0301(00)00081-2
[39] 贾立国, 陈玉珍, 苏亚拉其其格, 等. 灌溉马铃薯水分高效利用途径及其机理. 土壤通报, 2018, 49(1):226-231.
[40] Haverkort A J, Waart M, Bodlaender K. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Research, 1990, 33(1):89-96.
doi: 10.1007/BF02358133
[41] 乌兰, 石晓华, 杨海鹰, 等. 苗期水分亏缺对马铃薯产量形成的影响. 中国马铃薯, 2015, 29(2):80-84.
[42] 李发虎, 贾立国, 樊明寿. 水分对马铃薯源、库、流调控的研究进展. 作物杂志, 2015(6):22-26.
[43] 贾立国, 陈玉珍, 樊明寿, 等. 干旱对马铃薯光合特性及块茎形成的影响. 干旱区资源与环境, 2018, 32(2):188-193.
[44] 苏亚拉其其格, 樊明寿, 陈玉珍, 等. 马铃薯非结构性碳水化合物含量对水分胁迫的响应. 植物生理学报, 2019, 55(12):1839-1850.
[45] 敖孟奇, 秦永林, 陈杨, 等. 农田土壤Nmin对马铃薯块茎形成的影响. 中国马铃薯, 2013, 27(5):302-305.
[46] Tiwari J K, Buckseth T, Devi S, et al. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiology and Biochemistry, 2020, 154:171-183.
doi: 10.1016/j.plaphy.2020.05.041
[47] Zheng H, Wang Y, Zhao J. Tuber formation as influenced by the C:N ratio in potato plants. Journal of Plant Nutrition and Soil Science, 2018, 181:686-693.
doi: 10.1002/jpln.201700571
[48] Suyala Q, Jia L, Qin Y, et al. Effects of different nitrogen forms on potato growth and development. Journal of Plant Nutrition, 2017, 40(11):1151-1159.
[49] Gao Y, Jia L, Hu B, et al. Potato stolon and tuber growth influenced by nitrogen form. Plant Production Science, 2014, 17(2):138-143.
doi: 10.1626/pps.17.138
[50] Meng L, Zhang T, Chen Y, et al. The influence of endogenous sugar on potato tuberization in in vivo conditions. American Journal of Potato Research, 2020, 97(8):297-307.
doi: 10.1007/s12230-020-09782-4
[1] 谢奎忠, 孙小花, 罗爱花, 柳永强, 唐德晶, 朱永永, 胡新元. 基施锌肥对长期连作马铃薯抗病性相关酶活性、土传病害和产量的影响[J]. 作物杂志, 2022, (4): 154–159
[2] 刘菊, 李广存, 段绍光, 胡军, 简银巧, 刘建刚, 金黎平, 徐建飞. 不同夜间温度处理对马铃薯试管薯及块茎形成相关基因表达的影响[J]. 作物杂志, 2022, (3): 92–98
[3] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[4] 杨志楠, 黄金文, 韩凡香, 李亚伟, 马建涛, 柴守玺, 程宏波, 杨德龙, 常磊. 秸秆带状覆盖对西北雨养区马铃薯农田土壤温度及产量的影响[J]. 作物杂志, 2022, (1): 196–204
[5] 高佳, 王姣, 王松, 刘红健, 康佳, 沈弘, 王海莉, 任少勇. 生物炭基肥对马铃薯田土壤脲酶活性和产量的影响[J]. 作物杂志, 2021, (6): 134–138
[6] 罗磊, 李亚杰, 姚彦红, 李丰先, 范奕, 董爱云, 刘惠霞, 牛彩萍, 李德明. 不同小整薯规格和药剂拌种处理对旱作重茬马铃薯生长及产量的影响[J]. 作物杂志, 2021, (6): 211–216
[7] 李鑫, 金光辉, 王鹏程, 王紫雯. 马铃薯品种(系)淀粉与产量表现稳定性分析[J]. 作物杂志, 2021, (6): 51–57
[8] 张微, 李志新, 赵雪, 张金鹏, 付春江, 于倩倩, 刘卫平. 双重检测马铃薯X和Y病毒试纸条制备技术研究[J]. 作物杂志, 2021, (6): 62–66
[9] 娄树宝, 李凤云, 田国奎, 王海艳, 田振东, 王立春, 刘喜才, 王辉. 马铃薯种质资源晚疫病抗性评价及分子标记辅助筛选[J]. 作物杂志, 2021, (4): 196–201
[10] 武志峰, 刘凯丽, 乐丽红, 陈忠平, 唐双勤, 李祖军, 韩瑞才, 曾研华, 曾勇军, 潘晓华, 石庆华, 吴自明. 化控措施对直播晚稻抽穗扬花期低温胁迫的缓解效应[J]. 作物杂志, 2021, (3): 114–119
[11] 杨平, 陈昱利, 巩法江, 毕海滨, 高明慧. 马铃薯块茎膨大特性及其与单薯鲜重之间的相关性[J]. 作物杂志, 2021, (2): 130–134
[12] 邱甜, 牛力立, 朱江, 蔡甫格, 王庆伟. 3种生长调节剂对马铃薯试管苗生长的影响[J]. 作物杂志, 2021, (2): 160–164
[13] 王玉娇, 曹祺, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才, 石书兵. 不同土壤条件下化学调控对小麦产量和品质的影响[J]. 作物杂志, 2021, (2): 96–100
[14] 段惠敏, 卢潇, 周晓洁, 李高峰, 文国宏, 王玉萍, 程李香, 张峰. 马铃薯叶型和种植密度对产量组分的影响[J]. 作物杂志, 2021, (1): 160–167
[15] 杨云马, 杨军芳, 贾良良, 邢素丽, 樊建英, 封志明, 张淑青, 相丛超, 黄少辉, 刘学彤. 河北二季作春播马铃薯养分吸收规律及肥料适宜用量[J]. 作物杂志, 2020, (6): 170–174
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!