作物杂志,2022, 第4期: 1421 doi: 10.16035/j.issn.1001-7283.2022.04.003
郑思怡1(), 杨晔1, 宋远辉1, 花芹1, 林泉祥1, 张海涛1, 程治军2()
Zheng Siyi1(), Yang Ye1, Song Yuanhui1, Hua Qin1, Lin Quanxiang1, Zhang Haitao1, Cheng Zhijun2()
摘要:
胚乳发育是种子形成的关键,其决定水稻的外观品质和食味品质。m5788是从粳稻品种中花11的组织培养后代中发现的甜质胚乳突变体,其籽粒皱缩,千粒重与穗粒数均显著降低,淀粉合成受阻,可溶性糖含量显著增加。通过对m5788与IRAT129杂交产生的F2代群体分析表明,甜质胚乳性状受1对隐性核基因控制。对569个F2隐性极端单株进行连锁分析和定位,将目的基因定位在8号染色体长臂端Z8-25.8和Z8-25.9之间110kb的区域内。该区间内存在1个与玉米甜质基因Sugary 1氨基酸序列相似性高达82.2%的基因LOC_Os08g40930,编码一个属于淀粉去分支酶(DBE)途径的异淀粉酶ISA1。测序结果表明,该基因序列和启动子在野生型和m5788中不存在碱基差异。qRT-PCR分析结果表明,与野生型相比,突变体中LOC_Os08g40930的表达量明显降低。同时,DBE途径中支链淀粉酶的编码基因表达量也显著降低。因此,m5788携带的isa1基因是一个新发现的等位变异。
[1] | 金锡铭. 水稻淀粉突变体flo6的表型分析及基因精细定位. 南京:南京农业大学, 2010. |
[2] |
Manners D J. Recent developments in our understanding of amylopectin structure. Carbohydrate Polymer, 1989, 11(2):87-112.
doi: 10.1016/0144-8617(89)90018-0 |
[3] |
Jeon J S, Ryoo N, Hahn T R, et al. Starch biosynthesis in cereal endosperm. Plant Physiology Biochemistry, 2010, 48(6):383-392.
doi: 10.1016/j.plaphy.2010.03.006 |
[4] |
Pfister B, Zeeman S C. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 2016, 73(14):2781-2807.
doi: 10.1007/s00018-016-2250-x |
[5] |
Dinges J R, Colleoni C, Myers A M, et al. Molecular structure of three mutations at the maize sugary1locus and their allele-specific phenotypic effects. Plant Physiology, 2001, 125:1406-1418.
pmid: 11244120 |
[6] |
Takahashi S, Kumagai Y, Igarashi H, et al. Biochemical analysis of a new sugary-type rice mutant,Hemi-sugary1,carrying a novel allele of the sugary-1 gene. Planta, 2019, 251(1):1-29.
doi: 10.1007/s00425-019-03297-x |
[7] |
Sestili F, Sparla F, Botticella E, et al. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science, 2016, 252:230-238.
doi: 10.1016/j.plantsci.2016.08.001 |
[8] |
Ferreira S J, Senning M, Fischer-Stettler M, et al. Simultaneous silencing of isoamylases ISA1,ISA2and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS ONE, 2017, 12(7):e0181444.
doi: 10.1371/journal.pone.0181444 |
[9] |
Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM 6 encodes a CBM 48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014, 77(6):917-930.
doi: 10.1111/tpj.12444 |
[10] | 李家洋, 钱前, 曾大力, 等. 水稻胚乳甜质控制基因SU1及其应用:中国,200510006770.8. 200510006770.8. 2005-02-04. |
[11] |
赵华, 张其芳, 赵倩, 等. 水稻胚乳糖质突变体Sug-11的淀粉粒结构和粒径分布及相关理化特性. 核农学报, 2015, 29(4):724-733.
doi: 10.11869/j.issn.100-8551.2015.04.0724 |
[12] |
Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. The Plant Journal, 2018, 95(3):545-556.
doi: 10.1111/tpj.13970 |
[13] | 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化. 食品研究与开发, 2020, 41(7):196-200. |
[14] |
Kubo A, Colleoni C, Dinges J R, et al. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiology, 2010, 153(3):956-969.
doi: 10.1104/pp.110.155259 |
[15] |
Streb S, Delatte T, Umhang M, et al. Starch granule biosynthesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell, 2008, 20:3448-3466.
doi: 10.1105/tpc.108.063487 |
[16] |
Dinges J R, Colleoni C, Myers J. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15(3):666-680.
pmid: 12615940 |
[17] |
Li Q F, Zhang G Y, Dong Z W, et al. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiology Biochemistry, 2009, 47(5):351-358.
doi: 10.1016/j.plaphy.2009.02.001 |
[18] |
Kawagoe Y, Kubo A, Satoh H, et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. The Plant Journal, 2005, 42(2):164-174.
doi: 10.1111/j.1365-313X.2005.02367.x |
[19] |
Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999, 121(2):399-409.
pmid: 10517831 |
[20] |
Fujita N, Toyosawa Y, Utsumi Y, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. Journal of Experimental Botany, 2009, 60(3):1009-1023.
doi: 10.1093/jxb/ern349 pmid: 19190097 |
[21] |
赵华, 王俊敏, 张其芳, 等. 水稻糖质胚乳突变体Sug-11籽粒灌浆过程的淀粉合成关键酶活性及其与淀粉理化特性关系. 中国水稻科学, 2015, 29(1):73-81.
doi: 10.3969/j.issn.1001-7216.2015.01.009 |
[22] | East E M, Hayes H K. Inheritance in maize. Zeitschrift für induktive Abstammungs-und Vererbungslehre, 1911, 6(1):193-196. |
[23] | 李水琴, 王文瑞, 刘海英, 等. 玉米胚乳遗传基础及相关基因研究. 种子, 2016, 35(6):45-49. |
[24] |
Nakamura Y, Kubo A, Shimamune T, et al. Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. The Plant Journal, 1997, 12(1):143-153.
doi: 10.1046/j.1365-313X.1997.12010143.x |
[25] |
Kubo A, Rahman S, Utsumi Y, et al. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase 1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiology, 2005, 137(1):43-56.
doi: 10.1104/pp.104.051359 |
[1] | 周宇娇, 张伟杨, 杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志, 2022, (4): 18 |
[2] | 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107114 |
[3] | 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187192 |
[4] | 张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响[J]. 作物杂志, 2022, (4): 255261 |
[5] | 高捷, 李思宇, 成大宇, 张杏雨, 顾希, 刘立军. 缓控释肥对水稻产量与品质影响的研究进展[J]. 作物杂志, 2022, (3): 2026 |
[6] | 杜海萌, 韦还和, 余清源, 戴其根. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022, (3): 3338 |
[7] | 秦娜, 朱灿灿, 代书桃, 宋迎辉, 李君霞, 王春义. 谷子黄叶色突变体ylm-1的精细定位与功能分析[J]. 作物杂志, 2022, (3): 5562 |
[8] | 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 2227 |
[9] | 韩丽君, 薛张逸, 谢昊, 顾骏飞. 干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响[J]. 作物杂志, 2022, (2): 222229 |
[10] | 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102109 |
[11] | 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 1119 |
[12] | 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124129 |
[13] | 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137141 |
[14] | 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161166 |
[15] | 段琉颖, 吴婷, 李霞, 谢建坤, 胡标林. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022, (1): 2030 |
|