作物杂志,2023, 第2期: 19 doi: 10.16035/j.issn.1001-7283.2023.02.001
• 专题综述 • 下一篇
司振兴1(), 梁郅哲1, 钱建财2, 许自成1, 李俊领1, 张豫丹1, 张莉2(), 贾玮1()
Si Zhenxing1(), Liang Zhizhe1, Qian Jiancai2, Xu Zicheng1, Li Junling1, Zhang Yudan1, Zhang Li2(), Jia Wei1()
摘要:
硒元素是人和动物必需的微量元素之一,人体缺硒会引发诸多疾病甚至导致死亡。我国是缺硒大国,全国有2/3的人口处于缺硒地区。目前,食物补硒是提高人体摄硒量的最佳途径,同时也决定着食物链中硒的水平。本文从环境角度介绍了植物对土壤中不同硒元素的吸收利用途径,综述了硒在植物体内的转运和代谢机制,为开发富硒农产品提供参考。
[1] |
Weeks M E. The discovery of the elements. VI. Tellurium and selenium. Journal of Chemical Education, 1932, 9:474.
doi: 10.1021/ed009p474 |
[2] |
Schiavon M, Pilon-Smits E A. The fascinating facets of plant selenium accumulation-biochemistry,physiology,evolution and ecology. New Phytologist, 2017, 213:1582-1596.
doi: 10.1111/nph.14378 pmid: 27991670 |
[3] |
Islam M Z, Park B J, Kang H M, et al. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chemistry, 2020, 309:125763- 125768.
doi: 10.1016/j.foodchem.2019.125763 |
[4] |
Hussein H A A, Darwesh O M, Mekki B B, et al. Evaluation of cytotoxicity,biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnology Reports, 2019, 24:e00377.
doi: 10.1016/j.btre.2019.e00377 |
[5] |
Feng R W, Wang L Z, Yang J G, et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, 2021, 402:123570.
doi: 10.1016/j.jhazmat.2020.123570 |
[6] | Meetu G, Shikha G. An overview of selenium uptake,metabolism,and toxicity in plants. Frontiers in Plant Science, 2017, 7:2074. |
[7] | Baker A J M, Mcgrath S P, Reeves R D, et al. Metal hyperaccumulator plants:A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of Contaminated Soil and Water, 2020, 11:85-107. |
[8] |
Dong Y, Zhang H, Hawthorn L, et al. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Research, 2003, 63:52-59.
pmid: 12517777 |
[9] | Plant J A, Kinniburgh D G, Smedley P L, et al. Arsenic and selenium. Treatise on Geochemistry, 2003, 9:17-66. |
[10] |
Ellis D R, Salt D E. Plants,selenium and human health. Current Opinion in Plant Biology, 2003, 6(3):273-279.
doi: 10.1016/S1369-5266(03)00030-X |
[11] | Fordyce F M. Selenium deficiency and toxicity in the environment. Essentials of Medical Geology, 2013, 16:375-415. |
[12] |
Wen H, Carignan J. Reviews on atmospheric selenium:emissions,speciation and fate. Atmospheric Environment, 2007, 41(34):7151-7165.
doi: 10.1016/j.atmosenv.2007.07.035 |
[13] |
Winkel L, Vriens B, Jones G, et al. Selenium cycling across soil- plant-atmosphere interfaces:A critical review. Nutrients, 2015, 7(6):4199-4239.
doi: 10.3390/nu7064199 pmid: 26035246 |
[14] |
White P J. Selenium accumulation by plants. Annals of Botany, 2016, 117:217-235.
doi: 10.1093/aob/mcv180 pmid: 26718221 |
[15] | 贾玮. 土壤施硒油菜秸秆溶解性有机质对核盘菌的抑制作用及其机理. 武汉:华中农业大学, 2019. |
[16] |
Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health:A review. Environment International, 2018, 112:294-309.
doi: 10.1016/j.envint.2017.12.035 |
[17] |
Presser T S, Barnes I. Dissolved constituents including selenium in waters in the vicinity of kesterson national wildlife refuge and the west grassland,fresno and merced counties,California. Chemical Research in Toxicology, 1985, 27:568-575.
doi: 10.1021/tx400428f |
[18] | 徐亚军. 水体中无机硒形态分析方法的研究及应用. 厦门:厦门大学, 2018. |
[19] | 范书伶, 王平, 张珩琳, 等. 环境中硒的迁移、微生物转化及纳米硒应用研究进展. 科学通报, 2020, 65(26):2853-2862. |
[20] |
Martens D A, Suarez D L. Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, 1997, 31:133-139.
doi: 10.1021/es960214+ |
[21] |
Tan L C, Nancharaiah Y V, Hullebusch E, et al. Selenium:environmental significance,pollution,and biological treatment technologies. Biotechnology Advances, 2016, 34:886-907.
doi: 10.1016/j.biotechadv.2016.05.005 |
[22] |
Nancharaiah Y V, Lens P N L. Selenium biomineralization for biotechnological applications. Trends Biotechnology, 2015, 33:323-330.
doi: 10.1016/j.tibtech.2015.03.004 |
[23] | Yee N, Ma J, Dalia A, et al. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Applied and Environmental Microbiology, 2007, 73:1914-1920. |
[24] |
Nelson D C, Casey W H, Sison J D, et al. Selenium uptake by sulfur-accumulating bacteria. Geochim Cosmochim Acta, 1996, 60:3531-3539.
doi: 10.1016/0016-7037(96)00221-9 |
[25] |
Kessi J, Hanselmann K W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. The Journal of Biological Chemistry, 2004, 279:50662-50669.
doi: 10.1074/jbc.M405887200 |
[26] |
Li D B, Cheng Y Y, Wu C, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Scientific Reports, 2014, 4:3735.
doi: 10.1038/srep03735 |
[27] | 樊俊. 硒在土壤-植物中的转化及烟株对硒的富集和抗性机理研究. 武汉:华中农业大学, 2015. |
[28] | White P J. Selenium metabolism in plants. Biochimica et Biophysica Acta-General Subjects, 2018:2333-2342. |
[29] | Anamika K, Lalit G, Jechan L, et al. Selenium in soil- microbe-plant systems:sources,distribution,toxicity,tolerance,and detoxification. Critical Reviews in Environmental Science and Technology, 2021, 7:1-42. |
[30] |
陈锦平, 刘永贤, 曾成城, 等. 植物对土壤硒的吸收转化研究进展. 生物技术进展, 2017, 7(5):421-427.
doi: 10.19586/j.2095-2341.2017.0104 |
[31] |
Wang D, Zhou F, Yang W X, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 2017, 182:284-292.
doi: S0045-6535(17)30709-9 pmid: 28500973 |
[32] | 宋卫卫. 有机硒在不同土壤中转化初探. 咸阳:西北农林科技大学, 2015. |
[33] | 雷红量, 丛文宇, 蔡照磊, 等. 植物根系与叶片吸收硒的关键过程及影响因素. 植物营养与肥料学报, 2021, 27(8):1456- 1467. |
[34] |
Barberon M, Berthomieu P, Clairotte M, et al. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytologist, 2008, 180(3):608-619.
doi: 10.1111/j.1469-8137.2008.02604.x pmid: 18761637 |
[35] |
Rouached H, Wirtz M, Alary R, et al. Differential regulation of the expression of two high-affinity sulfate transporters,SULTR1.1 and SULTR1.2,in Arabidopsis. Plant Physiology. 2008, 147:897-911.
doi: 10.1104/pp.108.118612 pmid: 18400935 |
[36] |
Elie E K, Nicole C, Hatem R, et al. Characterization of a selenate-resistant Arabidopsis mutant:root growth as a potential target for selenate toxicity. Plant Physiology, 2007, 143:1231- 1241.
doi: 10.1104/pp.106.091462 |
[37] |
Yoshimoto N. Phloem-localizing sulfate transporter,Sultr1;3,mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiology, 2003, 131(4):1511-1517.
doi: 10.1104/pp.014712 pmid: 12692311 |
[38] |
Boldrin P F, De Figueiredo M A, Yang Y, et al. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiologia Plantarum, 2016, 158(1):80-91.
doi: 10.1111/ppl.2016.158.issue-1 |
[39] |
El Mehdawi A F, Jiang Y, Guignardi Z S, et al. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. The New Phytologist, 2018, 217:194-205.
doi: 10.1111/nph.2018.217.issue-1 |
[40] |
Cao M J, Wang Z, Wirtz M, et al. SULTR3; 1 is a chloroplast- localized sulfate transporter in Arabidopsis thaliana. The Plant Journal, 2013, 73(4):607-616.
doi: 10.1111/tpj.2013.73.issue-4 |
[41] |
Kataoka T, Hayashi N, Yamaya T, et al. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology, 2004, 136:4198-4204.
doi: 10.1104/pp.104.045625 pmid: 15531709 |
[42] |
Boldrin P F, De Figueiredo M A, Yang Y, et al. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiologia Plantarum, 2016, 158(1):80-91.
doi: 10.1111/ppl.2016.158.issue-1 |
[43] |
Kataoka T, Watanabe-Takahashi A, Hayashi N, et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell, 2004, 16(10):2693-2704.
doi: 10.1105/tpc.104.023960 pmid: 15367713 |
[44] |
Zhang L H, Abdel-Ghany S E, Freeman J L, et al. Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiologia Plantarum, 2006, 128(2):212-223.
doi: 10.1111/ppl.2006.128.issue-2 |
[45] |
Shen R, Gou Y, Yu T, et al. Effects of selenate on Se,flavonoid,and glucosinolate in broccoli florets by combined transcriptome and metabolome analyses. Food Research International, 2021, 146:110463.
doi: 10.1016/j.foodres.2021.110463 |
[46] |
Enrico M, Massonneau A, Nathalie F. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiology, 2000, 41(11):1175-1186.
doi: 10.1093/pcp/pcd059 |
[47] |
Shrift A, Ulrich J M. Transport of selenate and selenite into astragalus roots. Plant Physiologist, 1969, 44:893-896.
doi: 10.1104/pp.44.6.893 |
[48] |
Li H F, Mcgrath S P, Zhao F J. Selenium uptake,translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 2010, 178(1):92-102.
doi: 10.1111/nph.2008.178.issue-1 |
[49] |
Song Z, Shao H, Huang H, et al. Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environmental and Experimental Botany, 2017, 137:158-165.
doi: 10.1016/j.envexpbot.2017.02.011 |
[50] |
Zhang L, Hu B, Li W, et al. OsPT2,a phosphate transporter,is involved in the active uptake of selenite in rice. New Phytologist, 2014, 201(4):1183-1191.
doi: 10.1111/nph.2014.201.issue-4 |
[51] |
Zhao X Q, Mitani N, Yamaji N, et al. Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiologist, 2010, 153(4):1871-1877.
doi: 10.1104/pp.110.157867 |
[52] |
Jiang Y, Zeng Z H, Bu Y, et al. Effects of selenium fertilizer on grain yield,Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil and Environment, 2015, 61(8):371-377.
doi: 10.17221/284/2015-PSE |
[53] | 彭琴, 李哲, 梁东丽, 等. 不同作物对外源硒动态吸收、转运的差异及其机制. 环境科学, 2017, 38(4):1667-1674. |
[54] |
El Mehdawi A F, Lindblom S D, Cappa J J, et al. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-ray microprobe analysis. International Journal of Phytoremediation, 2015, 17(8):753-765.
doi: 10.1080/15226514.2014.987374 pmid: 26030363 |
[55] |
李玉梅, 王根林, 李艳, 等. 水稻对有机态硒的吸收与积累. 中国农学通报, 2017, 33(10):7-11.
doi: 10.11924/j.issn.1000-6850.casb16050144 |
[56] |
Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Archives of Environmental Contamination and Toxicology, 2013, 65:458-465.
doi: 10.1007/s00244-013-9926-0 pmid: 23793939 |
[57] |
Abrams M M, Burau R G, Zasoski R J. Organic selenium distribution in selected California soils. Soil Science Society of America Journal, 1990, 54(4):979-982.
doi: 10.2136/sssaj1990.03615995005400040007x |
[58] | 邓坤. 水稻根系吸收和转运硒代蛋氨酸的机制研究. 洛阳:河南科技大学, 2015. |
[59] | 王琪.水稻和小麦对有机硒的吸收、 转运及形态转化机制. 北京: 中国农业大学, 2017. |
[60] |
Zhang L H, Hu B, Deng K, et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnology Journal, 2019, 17(6):1058- 1068.
doi: 10.1111/pbi.13037 pmid: 30466149 |
[61] |
Victoria F, Eustaquio G P, Thomas E. Foliar water and solute absorption:an update. The Plant Journal, 2021, 105(4):870-883.
doi: 10.1111/tpj.v105.4 |
[62] | Du W J, Yu D Y, Fu S X. Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.]. Agricultural Sciences in China, 2009, 8(5):529-537. |
[63] |
Raven J A. Selection pressures on stomatal evolution. New Phytologist, 2002, 153(3):371-386.
doi: 10.1046/j.0028-646X.2001.00334.x pmid: 33863217 |
[64] | Eichert T, Kurtz A, Steiner U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 2008:134,151-160. |
[65] |
Chen Z, Zhao P X, Miao Z Q, et al. SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiology, 2019, 180:593-604.
doi: 10.1104/pp.18.01439 pmid: 30837346 |
[66] |
Sors T G, Ellis D R, Salt D E. Selenium uptake,translocation,assimilation and metabolic fate in plants. Photosynthesis Research, 2005, 86(3):373-389.
pmid: 16307305 |
[67] | Setya A, Murillo M, Leustek T. Sulfate reduction in higher plants:molecular evidence for a novel 5′-adenylylsulfate reductase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:13383-13388. |
[68] |
Sors T G, Ellis D R, Na G N, et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal, 2010, 42(6):785-797.
doi: 10.1111/tpj.2005.42.issue-6 |
[69] |
Fisher B, Yarmolinsky D, Abdel-Ghany S, et al. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin. Plant Physiology Biochemistry, 2016, 106:228-235.
doi: 10.1016/j.plaphy.2016.05.004 |
[70] |
Hsieh H S, Ganther H E. Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemistry, 1975, 14(8):1632-1636.
pmid: 235962 |
[71] |
Bogdanova N, Hell R. Cysteine synthesis in plants:protein- protein interactions of serine acetyltransferase from Arabidopsis thaliana. The Plant Journal, 1997, 11(2):251-262.
doi: 10.1046/j.1365-313X.1997.11020251.x |
[72] |
Anderson J C D W. Incorporation of cysteine and selenocysteine into cystathionine and selenocystathionine by crude extracts of spinach. Phytochemistry, 1988, 27(11):3453-3460.
doi: 10.1016/0031-9422(88)80747-7 |
[73] |
Zhou Z S, Smith A E, Matthews R G. L-Selenohomocysteine:one-step synthesis from L-selenomethionine and kinetic analysis as substrate for methionine synthases. Bioorganic and Medicinal Chemistry Letters, 2000, 10(21):2471-2475.
pmid: 11078203 |
[74] |
Tagmount A, Terry B N. An essential role of S-adenosyl- L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine,the precursor of volatile selenium. Plant Physiology, 2002, 130(2):847-856.
doi: 10.1104/pp.001693 |
[75] |
Lewis B G, Johnson C M, Broyer T C. Volatile selenium in higher plants the production of dimethyl selenide in cabbage leaves by enzymatic cleavage of Se-methyl selenomethionine selenonium salt. Plant and Soil, 1974, 40:107-118.
doi: 10.1007/BF00011413 |
[76] |
De S M P, Mel L C, Mulholland M M, et al. Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian Mustard. Plant Physiology, 2000, 122:1281-1288.
pmid: 10759525 |
[77] | 李鸣凤, 邓小芳, 付小丽, 等. 不同硒源对小麦生长、硒吸收利用以及玉米后效的影响. 农业环境科学学报, 2017, 36(1):1-7. |
[78] | 邓小芳, 吕臣浩, 黄立强, 等. 喷施时期和硒源对‘金桃’猕猴桃硒吸收累积及主要品质指标的影响. 果树学报, 2018, 35(11):1385-1392. |
[79] | 曹升, 王颖, 陈会鲜, 等. 外源硒对食用木薯品质的影响研究. 作物杂志, 2020(1):168-172. |
[80] | 史雅涵, 杜天庆, 翟红梅, 等. 硒对芸豆种子萌发、生理特性及营养品质的影响. 作物杂志, 2021(3):210-216. |
[81] | 王光. 花生芽富硒的机理及有机硒的生物活性研究. 广州:华南理工大学, 2017. |
[82] | 厉舒祯, 沈文丽, 邓晔, 等. 微生物还原Se(Ⅵ)和Se(Ⅳ)合成SeNPs机理研究新进展. 应用与环境生物学报, 2017, 23(3):579-585. |
[83] | 陈梦, 罗向光, 谷俊涛, 等. 印度芥菜BjSMT基因的克隆及抗硒分析. 河北农业大学学报, 2018, 41(5):13-18. |
[84] |
Leduc D L, Tarun A S, Montes-Bayon M, et al. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiology, 2004, 135(1):377-383.
pmid: 14671009 |
[85] |
Van Hoewyk D, Garifullina G F, Ackley A R, et al. Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiology, 2005, 139(3):1518-1528.
doi: 10.1104/pp.105.068684 |
[1] | 王悦华, 周俊学, 马宜林, 马君红, 王艳芳, 赵世民, 申洪涛, 李友军, 刘领. 烤烟品系LY1306“上六片”生理采收成熟度对烤烟代谢和品质的影响[J]. 作物杂志, 2023, (2): 171177 |
[2] | 边淑惠, 邢国芳, 梁昕, 张舒玮, 王佳宁, 叶昊雨. 不同形态硒及用量对幼苗期谷子生长与生理的影响[J]. 作物杂志, 2023, (1): 152157 |
[3] | 刘素军, 蒙美莲, 苏日古嘎. 干旱胁迫及复水对马铃薯糖代谢途径中基因表达影响的研究[J]. 作物杂志, 2023, (1): 3845 |
[4] | 吴子帅, 刘广林, 李虎, 罗群昌, 陈传华, 朱其南. 施氮量对优质常规籼稻稻米品质的影响[J]. 作物杂志, 2023, (1): 8488 |
[5] | 范端阳, 尹美强, 温银元, 郭之瑶, 温艳杰, 王钰麒, 孙敏, 高志强. 硝铵氮源配比对谷子苗期生长及氮素利用的影响[J]. 作物杂志, 2023, (1): 96102 |
[6] | 郭巨先, 黄家昕, 李桂花, 符梅, 罗文龙, 王俊, 陆美莲. 芋头挥发性代谢物分析及其品质综合评价[J]. 作物杂志, 2022, (6): 167173 |
[7] | 王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展[J]. 作物杂志, 2022, (5): 112 |
[8] | 陶玥玥, 孙华, 王海候, 陆长婴, 沈明星. 刈割期与晾晒天数对饲料油菜产量和粗蛋白含量及水分的影响[J]. 作物杂志, 2022, (5): 215220 |
[9] | 周超, 张田田, 杨丽娜, 张勇, 马冲, 代伟程, 吴翠霞, 宋敏. 根部吸收氟啶虫酰胺在玉米植株中的分布特点及对玉米蚜虫活性效果评价[J]. 作物杂志, 2022, (5): 261266 |
[10] | 董林林, 沈明星, 施林林, 沈园, 王海候, 陆长婴. 生物质炭配施蚯蚓粪对水稻产量及养分吸收的影响[J]. 作物杂志, 2022, (5): 6977 |
[11] | 王保君, 程旺大, 沈亚强, 秦叶波, 苏瑶, 陈贵, 鲁晨妮, 张红梅. 氮肥减量对优质稻籽粒蛋白质影响及其合理性评价[J]. 作物杂志, 2022, (3): 168173 |
[12] | 刘攀锋, 秦杰, 郝爽楠, 王丹立, 杨武德, 冯美臣, 宋晓彦. 硒肥浓度、施用时期和施肥方式对不同谷子品种产量和籽粒硒含量的影响[J]. 作物杂志, 2022, (2): 182188 |
[13] | 陆丹丹, 叶苗, 张祖建. 稻米蛋白质及其组分研究概况及其对稻米品质的影响[J]. 作物杂志, 2022, (2): 2834 |
[14] | 房孟颖, 闫鹏, 卢霖, 王庆燕, 董志强. 乙矮合剂对不同氮水平夏玉米氮代谢及产量的调控效应[J]. 作物杂志, 2022, (2): 96103 |
[15] | 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 1119 |
|