作物杂志,2023, 第3期: 159–166 doi: 10.16035/j.issn.1001-7283.2023.03.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

温度和CO2浓度升高下双季稻茎蘖动态、成穗率与产量的关系

宋春燕1(), 万运帆1, 李玉娥1, 蔡岸冬1, 胡严炎2, 周慧2, 朱波2, 王斌1()   

  1. 1中国农业科学院农业环境与可持续发展研究所/农业农村部农业环境重点实验室,100081,北京
    2长江大学农学院,434022,湖北荆州
  • 收稿日期:2022-02-17 修回日期:2022-06-06 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 王斌,主要从事气候变化与农业减排高产研究,E-mail:wangbin01@caas.cn
  • 作者简介:宋春燕,主要从事气候变化对农业影响与适应研究,E-mail:schunyan0201@163.com
  • 基金资助:
    国家自然科学基金(41905102);国家重点研发计划(2017YFD0300400)

Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration

Song Chunyan1(), Wan Yunfan1, Li Yu’e1, Cai Andong1, Hu Yanyan2, Zhou Hui2, Zhu Bo2, Wang Bin1()   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agriculture, Yangtze University, Jingzhou 434022, Hubei, China
  • Received:2022-02-17 Revised:2022-06-06 Online:2023-06-15 Published:2023-06-16

摘要:

为明确气候变化下我国双季稻茎蘖动态与成穗特征的变化及其与产量的关系,利用开顶式气室(OTC)连续开展4年8个生长季的大田气候变化原位模拟试验,设置对照(CK)、增温2℃(ET)、CO2浓度增加60μmol/mol(EC)、同时增温增CO2浓度(ETEC)共4个处理,研究双季稻生育期内茎蘖动态、成穗率变化特征以及对产量的影响。结果表明,随着累积辐射量和生长度日(GDD)升高,水稻分蘖达到峰值后部分消亡,且早稻分蘖增长和消亡速率均大于晚稻。相比CK,ET、EC和ETEC条件下早稻最大分蘖数和无效分蘖数分别提高3.6%~ 14.2%和8.9%~134.2%,成穗率降低0.4%~9.3%,对产量形成具有不利影响;晚稻最大分蘖数提高2.9%~13.1%,无效分蘖数降低1.6%~64.8%,成穗率提高1.7%~22.1%,有助于产量增长。ETEC处理对双季稻最大分蘖具有正向协同的交互作用,而对无效分蘖和成穗率的交互作用不显著。总体而言,大气温度和CO2浓度升高对早稻分蘖和成穗具有负效应,对晚稻表现为正效应,未来气候变化背景下提高水稻茎蘖数,控制无效分蘖,进而提高成穗率,对水稻稳产增产具有重要意义。

关键词: 双季稻, CO2浓度, 温度, 分蘖, 成穗率, 产量

Abstract:

In order to clarify the variation of tiller dynamic and earbearing tiller rate of Chinese double cropping rice under climate change and their relationship with yield formation, a field experiment was conducted using open-top chambers (OTC) to simulate different scenarios of elevated temperature and/or CO2 concentration for four rotations of double rice. There were four treatments, CK, ET (OTC with 2℃ temperature elevation), EC (OTC with 60μmol/mol CO2 elevation), ETEC (OTC with simultaneous 2℃ temperature and 60μmol/mol CO2 elevation). The characteristics of tiller dynamic, earbearing tiller rate and their effect on rice yield were explored. The results showed that rice tiller reached the peak then partially declined with the increase of cumulative radiation and growth degree-day (GDD), and the tiller growth/extinction rate in early rice was higher than that in late rice. Compared with CK, ET, EC and ETEC treatments in early rice increased number of maximum tiller and invalid tiller by 3.6%-14.2% and 8.9%-134.2%, respectively, and decreased earbearing tiller rate by 0.4%- 9.3%, which had negative effect on yield formation. In late rice, ET, EC and ETEC treatments increased maximum tiller number and ear bearing tiller rate by 2.9%-13.1% and 1.7%-22.1%, respectively, and decreased ineffective tiller number by 1.6%-64.8%, which contributed to the increase in yield. ETEC treatment showed a positive synergy on the promotion of maximum tiller, while their interaction on ineffective tiller number and earbearing tiller rate was not significant. Generally, elevated temperature and CO2 concentration had a negative effect on tillering and earbearing for early rice, while had a positive effect for late rice. Under the background of future climate change, it was of great significance to promote rice tiller development, control ineffective tiller and increase earbearing tiller rate for stable and high yield output.

Key words: Double cropping rice, CO2 concentration, Temperature, Tiller, Earbearing tiller rate, Yield

表1

早稻和晚稻施肥方案

养分
Nutrient
总量
Total
amount
基肥
Basal
fertilizer
分蘖肥
Tiller
fertilizer
穗肥
Panicle
fertilizer
N 180 90 45 45
P2O5 60 60 0 0
K2O 90 30 15 45

图1

增温增CO2下双季稻分蘖数与累积辐射量及GDD的关系 y1:背景CO2浓度;y2:增加CO2浓度

表2

温度、CO2浓度与年际对双季稻分蘖、成穗及产量影响的多因素方差分析(P值)

指标
Indicator
早稻Early rice 晚稻Late rice
最大分蘖数
Maximum tiller
number
无效分蘖数
Invalid tiller
number
有效穗数
Productive
ear number
成穗率
Earbearing tiller rate
产量
Yield
最大分蘖数
Maximum tiller
number
无效分蘖数
Invalid tiller
number
有效穗数
Productive
ear number
成穗率
Earbearing tiller rate
产量
Yield
温度Tepmerature (T) <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 0.05 <0.01 <0.01 <0.01
CO2 <0.01 0.79 <0.01 0.80 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
年Year <0.01 0.35 <0.01 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
T×CO2 0.33 0.65 <0.05 0.35 <0.01 <0.05 0.82 0.47 0.38 <0.05
T×Year 0.79 0.62 0.68 0.85 0.08 0.65 <0.01 <0.05 <0.01 0.18
CO2×Year 0.91 <0.05 0.36 0.31 0.15 0.32 0.12 0.53 0.12 0.53
T×CO2×Year 0.93 0.65 0.83 0.90 0.37 0.53 0.89 0.60 0.81 0.21

图2

增温增CO2下双季稻最大分蘖数 不同字母表示差异显著(P < 0.05),误差线为3个重复值之间的标准误,下同

图3

增温增CO2下双季稻无效分蘖数

图4

增温增CO2对双季稻有效穗数、成穗率和产量的影响

图5

增温增CO2下最大分蘖数和成穗率影响双季稻产量的结构方程模型 红色和蓝色箭头分别表示正面和负面作用。实线表示影响通过显著性检验(P < 0.05),虚线表示不存在显著影响。箭头旁数字为标准化的路径系数,方框旁加粗数字为SEM模型可解释该变量的比例。模型所用数据为2013-2016年(n=48)

[1] 赵宗慈, 罗勇, 黄建斌. 回顾IPCC30年(1988-2018年). 气候变化研究进展, 2018, 14(5):540-546.
[2] 熊伟, 杨婕, 吴文斌, 等. 中国水稻生产对历史气候变化的敏感性和脆弱性. 生态学报, 2013, 33(2):509-518.
[3] 虞国平. 水稻在我国粮食安全中的战略地位分析. 新西部, 2009(22):31-33.
[4] 李建平, 李俊杰, 李文娟, 等. “十四五”期间我国水稻增产潜力与实现路径. 农业经济问题, 2021(7):25-37.
[5] 黄英金, 罗永锋, 黄兴作, 等. 水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系. 中国水稻科学, 1999, 13(4):205-210.
[6] 李敏, 马均, 傅泰露, 等. 大田生长期全程高温胁迫对杂交水稻生育后期生长发育及产量形成的影响. 杂交水稻, 2009, 24(4):65-71.
[7] 张明静, 韩笑, 胡雪, 等. 不同种植方式下温度升高对水稻产量及同化物转运的影响. 中国农业科学, 2021, 54(7):1537- 1552.
doi: 10.3864/j.issn.0578-1752.2021.07.017
[8] Zhao C, Liu B, Piao S, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9326-9331.
[9] 魏金连, 潘晓华, 邓强辉. 不同生育阶段夜温升高对双季水稻产量的影响. 应用生态学报, 2010, 21(2):331-337.
[10] 黄建晔, 董桂春, 杨洪建, 等. 开放式空气CO2增高对水稻物质生产与分配的影响. 应用生态学报, 2003, 14(2):253-257.
[11] 蔡威威, 艾天成, 万运帆, 等. 环境温度和CO2浓度升高对湖北早稻氮素含量及产量的影响. 中国农业气象, 2016, 37(2):231-237.
[12] Kim H Y, Lieffering M, Kobayashi K, et al. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 2003, 83(3):261-270.
doi: 10.1016/S0378-4290(03)00076-5
[13] Woodwell G M. The warming of the industrialized middle latitudes 1985-2050: Causes and consequences. Climatic Change, 1989, 15(1/2):31-50.
doi: 10.1007/BF00138844
[14] 景立权, 赖上坤, 王云霞, 等. 大气CO2浓度和温度互作对水稻生长发育的影响. 生态学报, 2016, 36(14):4254-4265.
[15] Yun S I, Kang B M, Lim S S, et al. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [CO2]. Agricultural and Forest Meteorology, 2012, 154/155:75-83.
doi: 10.1016/j.agrformet.2011.10.011
[16] Ziska L H, Namuco O, Moya T, et al. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 1997, 89(1):45-53.
doi: 10.2134/agronj1997.00021962008900010007x
[17] 袁嫚嫚, 朱建国, 孙义祥, 等. 大气CO2浓度和温度升高对水稻籽粒充实度的影响. 农业环境科学学报, 2019, 38(10):2251-2262.
[18] 王萌萌, 杨沈斌, 江晓东, 等. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟. 作物学报, 2016, 42(1):82-92.
[19] 黄建晔, 杨洪建, 董桂春, 等. 开放式空气CO2浓度增高对水稻产量形成的影响. 应用生态学报, 2002, 13(10):1210-1214.
[20] 何帅奇. 自由大气CO2浓度与温度升高对水稻干物质分配及产量构成因素的影响. 南京:南京农业大学, 2014.
[21] Baker J T, Allen L H, Boote, et al. Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, 1990, 115:313-320.
[22] Imai K, Coleman D F, Yanagisawa T, et al. Increase of atmospheric partial pressure of carbon dioxide and growth and yield of rice. Japanese Journal of Crop Science, 1985, 54(4):413- 418.
doi: 10.1626/jcs.54.413
[23] Yang L, Liu H, Wang Y, et al. Yield formation of CO2 enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture Ecosystems & Environment, 2009, 129(1/2/3):193-200.
doi: 10.1016/j.agee.2008.08.016
[24] Liu H J, Yang L X, Wang Y L, et al. Yield formation of CO2 enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research, 2008, 108(1):93-100.
doi: 10.1016/j.fcr.2008.03.007
[25] Cheng W G, Sakai H, Yagi K, et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 2009, 149(1):51-58.
doi: 10.1016/j.agrformet.2008.07.006
[26] Baker J T, Allen L H, Boote K J, et al. Response of rice to carbon dioxide and temperature. Agricultural and Forest Meteorology, 1992, 60(3/4):153-166.
doi: 10.1016/0168-1923(92)90035-3
[27] Han Y K, Horie T, Nakagawa H, et al. Effects of elevated CO2 concentration and high temperature on growth and yield of rice : II. The effect on yield and its components of Akihikari rice. Japanese Journal of Crop Science, 1996, 65(4):644-651.
doi: 10.1626/jcs.65.644
[28] 马娉, 李如楠, 王斌, 等. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应. 应用生态学报, 2020, 31(3):872-882.
doi: 10.13287/j.1001-9332.202003.029
[29] Wang B, Li J L, Wan Y F, et al. Variable effects of 2°C air warming on yield formation under elevated [CO2] in a Chinese double rice cropping system. Agricultural and Forest Meteorology, 2019, 278:107662.
doi: 10.1016/j.agrformet.2019.107662
[30] Kang S Z, Liang Z S, Pan Y H, et al. Alternate furrow irrigation for maize production in an arid area. Agricultural Water Management, 2000, 45(3):267-274.
doi: 10.1016/S0378-3774(00)00072-X
[31] Matsushima S, Tsunoda K. Analysis of developmental factors determining yield and its application to yield prediction and culture improvement of lowland rice. Effects of temperature and its daily rang in different growth-stages upon the growth,grain yield and its constitutional factors in rice plants. Proceedings of the Crop Science Society of Japan, 1958, 26(4):243-244.
[32] 李景蕻, 李刚华, 杨从党, 等. 增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响. 中国水稻科学, 2010, 24(1):36-42.
doi: 10.3969/j.issn.1001-7216.2010.01.07
[33] Martinez-Eixarch M, Mdm C, Tomàs N, et al. Tillering and yield formation of a temperate Japonica rice cultivar in a Mediterranean rice agrosystem. Spanish Journal of Agricultural Research, 2015, 13(4):e0905.
doi: 10.5424/sjar/2015134-7085
[34] 凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995, 21(4):463-469.
[35] Yang L X, Huang J Y, Yang H J, et al. The impact of free-air CO2enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research, 2006, 98(2/3):141-150.
doi: 10.1016/j.fcr.2005.12.014
[1] 袁帅, 陈基旺, 陈平平, 易镇邪. 湘早籼45号头季与再生季产量及镉积累分配对灌溉方式的响应[J]. 作物杂志, 2023, (3): 101–108
[2] 张国忠, 李娟, 李毓才, 金寿林, 洪汝科, 黄大军, 普世皇, 施从波, 段自林, 马迪, 陈丽娟. 氮肥减施与移栽密度对杂交粳稻滇禾优615产量和食味品质的影响[J]. 作物杂志, 2023, (3): 109–115
[3] 马义虎, 何贤彪, 陈剑, 汤学军, 王旭辉, 何豪豪, 金羽清, 齐文, 蒋海凌, 周翠. 秧龄对浙东南地区优质稻产量和品质的影响[J]. 作物杂志, 2023, (3): 116–125
[4] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[5] 邢丕鹏, 黄彦峰, 易思媛, 兰儒剑, 潘圣刚, 莫钊文, 田华, 段美洋, 唐湘如. 抽穗期叶面喷施鸟氨酸对香稻产量、品质以及2-乙酰基-1-吡咯啉生物合成的影响[J]. 作物杂志, 2023, (3): 134–138
[6] 李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响[J]. 作物杂志, 2023, (3): 148–153
[7] 徐茜, 曾新宇, 肖波, 李保证, 张兴端. 叶面肥对叶菜型甘薯茎尖产量和品质的影响[J]. 作物杂志, 2023, (3): 183–187
[8] 郭书磊, 王瑛, 魏良明, 张新, 刘焱, 吴伟华, 卢道文, 雷晓兵, 王振华, 鲁晓民. 不同生态条件下玉米产量影响因素分析[J]. 作物杂志, 2023, (3): 205–214
[9] 罗四维, 石秀楠, 贾永红, 张金汕, 王凯, 李丹丹, 王润琪, 董艳雪, 石书兵. 滴灌的毛管间距和滴头间距对匀播冬小麦光合、干物质积累和产量形成的影响[J]. 作物杂志, 2023, (3): 230–237
[10] 邵扬, 郭延平, 闵庚梅, 杨晓明. 不同功能除草剂对蚕豆生长和田间杂草的防治效果[J]. 作物杂志, 2023, (3): 254–259
[11] 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 27–34
[12] 李晶, 李鹏程, 贺永斌, 邢雅玲, 孟凡华, 周谦, 南铭. 16份俄罗斯冬小麦品种资源主要性状多元分析和综合评价[J]. 作物杂志, 2023, (3): 58–65
[13] 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 86–93
[14] 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94–100
[15] 杨世奇, 陈丽明, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 杂草防除对双季直播优质晚籼稻产量和稻米品质的影响[J]. 作物杂志, 2023, (2): 121–125
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!