作物杂志,2023, 第3期: 221–229 doi: 10.16035/j.issn.1001-7283.2023.03.031

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

藜麦对低氮胁迫的响应研究

郭红霞1(), 王创云2(), 邓妍2, 赵丽2, 张丽光2, 郭虹霞2, 秦丽霞2, 高飞2, 席瑞珍2   

  1. 1山西大学生命科学学院,030006,山西太原
    2山西农业大学农学院,030031,山西太原
  • 收稿日期:2021-12-05 修回日期:2022-05-12 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 王创云,主要从事有机旱作高产栽培研究,E-mail:wrwcy@139.com
  • 作者简介:郭红霞,主要从事植物遗传方向研究,E-mail:2031053753@qq.com
  • 基金资助:
    山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202105D121008-3-5);山西省高等学校科技创新项目(2021L174);黄土高原特色作物优质高效生产省部共建协同创新中心自主研发项目(SBGJXTZX- 23);中国农业科学院科技创新工程协同创新项目(CAAS-XTCX20190025);山西省深度贫困县科技精准扶贫专项(2020FP-05)

Response of Quinoa to Low Nitrogen Stress

Guo Hongxia1(), Wang Chuangyun2(), Deng Yan2, Zhao Li2, Zhang Liguang2, Guo Hongxia2, Qin Lixia2, Gao Fei2, Xi Ruizhen2   

  1. 1School of Life Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2021-12-05 Revised:2022-05-12 Online:2023-06-15 Published:2023-06-16

摘要:

为探究藜麦对低氮环境的响应机制,筛选耐低氮藜麦种质资源,采用盆栽方式,测定了9个不同基因型藜麦在不同氮水平(正常供氮和低氮胁迫)下农艺性状、生理特性及植株氮素利用等指标,通过主成分分析和聚类分析评价了各品系藜麦综合耐低氮能力。结果表明,与正常供氮相比,低氮胁迫下,藜麦地上部分生长受到明显抑制,株高、茎粗和地上部分干重呈降低趋势,主根长和根冠比呈上升趋势,根系体积、根系表面积及根系平均直径均呈下降趋势;叶绿素含量、最大荧光参数(Fm)和最大光化学效率(Fv/Fm)降低,而初始荧光参数(Fo)升高;根系活力、硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶活性及可溶性蛋白含量有所下降,而超氧化物歧化酶、过氧化物酶活性、丙二醛、可溶性糖及游离脯氨酸含量显著升高;植株全氮含量及氮积累量降低,但氮利用效率提高。通过主成分分析将26个单项指标转化为4个相互独立的综合指标(累计贡献率达83.959%),通过聚类分析可以将9个藜麦品系划分为耐低氮型、中间型和低氮敏感型,并筛选出1个耐低氮品系BL22。

关键词: 藜麦, 低氮胁迫, 综合评价, 品种筛选

Abstract:

In order to explore the response mechanism of quinoa to low nitrogen environment and select quinoa varieties with low nitrogen tolerance. The agronomic traits, some physiological characteristics and nitrogen utilization indexes of nine different genotypes of quinoa under different nitrogen levels treatments (normal N supply and low N stress) were determined by pot cultivation, and the comprehensive low nitrogen tolerance capacities of the lines were evaluated by principal component analysis and cluster analysis. The results showed that under low nitrogen stress, the shoot growth of the quinoa was inhibited, plant height, thick stem, and shoot dry weight showed a downward trend. The primary root length and root-shoot ratio rose increased obviously, while root volume, root surface area and average root diameter decreased. Chlorophyll content, maximum fluorescence parameter (Fm) and maximum photochemical efficiency (Fv/Fm) were reduced, while the initial fluorescence parameter Fo was increased. Root activity, nitrate reductase activity, glutamine synthase activity, glutamate synthase activity, and soluble protein content decreased, while the activities of superoxide dismutase and peroxidase, the contents of malondialdehyde, soluble sugar and free proline were increased. The total nitrogen content and nitrogen accumulation were reduced, while the nitrogen utilization efficiency was increased. The 26 individual indicators were transformed into four independent comprehensive indicators (cumulative contribute rate was 83.959%) by principal component analysis, and nine quinoa lines were classified into low-nitrogen tolerance, intermediate and low nitrogen sensitive types by cluster analysis, and one low-nitrogen- resistant line BL22 was selected.

Key words: Quinoa, Low nitrogen stress, Comprehensive evaluation, Variety screening

表1

供试的9份藜麦材料信息

材料
Material
相关信息
Relevant information
HL58 红藜,千粒重3.27g,生育期约120d
G68 白藜,千粒重3.19g,生育期约120d,高秆
A29 白藜,千粒重3.34g,生育期约120d,矮秆
G36 白藜,千粒重3.26g,生育期约120d,高秆
BL23 白藜,千粒重3.07g,生育期约120d
A86 白藜,千粒重3.15g,生育期约120d,矮秆
HL93 红藜,千粒重3.21g,生育期约120d
BL77 白藜,千粒重3.16g,生育期约120d
BL22 白藜,千粒重3.46g,生育期约120d

图1

低氮胁迫对不同藜麦品系地上部分生长的影响 不同小写字母表示P < 0.05水平差异显著,下同

表2

低氮胁迫对藜麦根系生长的影响

处理
Treatment
藜麦品系
Quinoa
line
最大根长
Maximum root
length (cm)
根系平均直径
Root average
diameter (mm)
根系表面积
Root surface
area (cm2)
根系体积
Root volume
(cm3)
根系干重
Root dry
weight (g)
根冠比
Root-shoot
ratio
CK HL58 12.43±0.16abA 0.32±0.01aAB 48.58±2.39aA 0.65±0.02aAB 0.21±0.01aAB 0.14±0.00bB
G68 10.98±0.31cdBCD 0.22±0.01dDE 45.48±0.08abAB 0.58±0.01bBC 0.16±0.01deDE 0.11±0.01dC
A29 10.43±0.25deCDE 0.26±0.02cCD 45.32±0.70abAB 0.55±0.02bcCD 0.18±0.01bcBCD 0.14±0.01bB
G36 12.87±0.35aA 0.34±0.01aA 36.69±2.10cC 0.44±0.03eE 0.15±0.01eE 0.12±0.01cdBC
BL23 9.99±0.48eDE 0.21±0.01dE 45.28±1.22abAB 0.54±0.02bcCD 0.18±0.01cdCD 0.14±0.00bB
A86 11.99±0.17bAB 0.29±0.01bBC 45.85±1.88abAB 0.70±0.01aA 0.22±0.01aA 0.14±0.00bcB
HL93 11.25±0.28cBC 0.27±0.02bcC 48.04±0.75aA 0.58±0.02bBCD 0.20±0.01abABC 0.17±0.01aA
BL77 9.86±0.34eE 0.28±0.01bcBC 36.51±1.51cC 0.46±0.04deE 0.16±0.01eDE 0.11±0.00dC
BL22 10.48±0.39deCDE 0.25±0.02cCD 42.81±0.86bB 0.50±0.02cdDE 0.20±0.01aAB 0.14±0.01bB
LN HL58 12.77±0.28abAB 0.29±0.02aA 46.67±1.30aA 0.62±0.02aA 0.22±0.01abAB 0.15±0.01bcdBC
G68 11.93±0.34bcBC 0.26±0.02abAB 40.35±0.78cB 0.51±0.01bcBC 0.17±0.01defEF 0.13±0.00fgD
A29 11.10±0.42cdCD 0.23±0.02bcdABC 41.65±1.47bcAB 0.51±0.02bcBC 0.19±0.01cdCDE 0.16±0.00bAB
G36 13.35±0.58aA 0.27±0.03abA 34.03±3.48dC 0.36±0.02fE 0.16±0.00fF 0.14±0.00efCD
BL23 10.59±0.14dD 0.20±0.01dC 42.20±0.47bcAB 0.43±0.03eD 0.18±0.00deDEF 0.15±0.00cdeBC
A86 13.15±0.56aAB 0.25±0.01abABC 41.65±0.92bcAB 0.53±0.03bBC 0.24±0.01aA 0.16±0.01bcB
HL93 11.32±0.20cdCD 0.26±0.01abAB 43.92±1.00abAB 0.56±0.02bAB 0.21±0.00bcBC 0.18±0.00aA
BL77 10.55±0.44dD 0.21±0.01cdBC 39.47±0.80cB 0.44±0.02deD 0.17±0.01efEF 0.12±0.00gD
BL22 10.56±0.08dD 0.24±0.01bcABC 41.40±1.58bcB 0.48±0.02cdCD 0.21±0.01cBCD 0.14±0.01deBC

图2

低氮胁迫对不同藜麦品系叶绿素含量的影响

图3

低氮胁迫对不同藜麦品系叶绿素荧光参数的影响

表3

低氮胁迫对藜麦酶活性及MDA含量的影响

处理
Treatment
藜麦品系
Quinoa line
NR活性
NR activity (U/g)
POD活性
POD activity (U/g)
SOD活性
SOD activity (U/g)
MDA含量
MDA content (nmol/g)
CK HL58 0.54±0.02aA 722.93±29.78bB 145.56±6.00abA 25.61±1.06aA
G68 0.42±0.02cC 836.99±34.48aA 118.50±4.88cC 21.28±0.87cBC
A29 0.16±0.01eE 661.04±27.23cdBC 139.07±5.73bAB 18.65±0.77dDE
G36 0.48±0.02bB 619.38±25.51dC 113.99±3.16cCD 16.59±0.68eE
BL23 0.18±0.01eE 716.67±19.87bcB 145.92±6.01abA 19.28±0.79dCD
A86 0.24±0.01dD 881.64±36.32aA 97.70±1.37dD 10.01±0.41gG
HL93 0.40±0.02cC 617.29±25.43dC 123.48±7.44cBC 19.09±0.66dCDE
BL77 0.17±0.01eE 616.73±12.89dC 117.52±4.84cC 23.38±0.96bAB
BL22 0.40±0.02cC 608.14±20.98dC 153.10±6.31aA 13.49±0.56fF
LN HL58 0.47±0.01aA 748.98±18.16bcABC 153.39±3.72abA 31.89±0.77bB
G68 0.19±0.01cC 782.80±18.98abAB 106.41±2.58eDE 36.04±0.87aA
A29 0.11±0.00eD 678.92±16.46cdBCD 148.93±1.56abA 28.24±0.31cBC
G36 0.40±0.01bB 641.99±15.56dCD 122.05±2.96dCD 25.45±0.62dCD
BL23 0.14±0.00dD 730.46±12.84bcBCD 142.33±3.45bcAB 19.84±0.28eEF
A86 0.06±0.00fE 853.51±23.49aA 100.16±2.43eE 23.78±0.58dDE
HL93 0.39±0.01bB 629.56±15.26dD 125.67±3.05dBC 17.98±0.44eF
BL77 0.12±0.00deD 637.34±9.05dD 130.04±3.15cdBC 38.13±0.92aA
BL22 0.39±0.01bB 625.04±15.15dD 158.97±0.84aA 13.70±0.33fG

表4

低氮胁迫对藜麦根系活力及氮代谢相关酶活性的影响

处理
Treatment
藜麦品系
Quinoa line
根系活力
Root activity [μg(h·g)]
GS活性
GS activity (U/g)
GOGTA活性
GOGTA activity (U/g)
CK HL58 76.03±3.13aA 65.61±2.70cdBC 26.47±1.59bBC
G68 63.04±1.75bB 69.67±0.98bcABC 29.80±1.23aAB
A29 47.52±1.96cC 63.22±3.81dC 23.18±0.95cCD
G36 40.22±0.56efDE 61.56±2.54dC 29.85±1.23aAB
BL23 43.68±2.63cdeCDE 66.88±2.75bcdBC 20.23±0.83dD
A86 42.62±1.76deCDE 75.98±3.13aA 30.76±1.27aA
HL93 46.16±1.90cdCD 72.12±2.97abAB 28.65±0.79abAB
BL77 36.94±1.52fE 70.06±2.89abcABC 23.02±0.95cCD
BL22 61.99±2.55bB 64.71±1.79cdBC 23.35±0.33cCD
LN HL58 80.52±0.84aA 59.18±1.43cdB 21.82±0.53cdCD
G68 44.73±1.08cC 60.74±1.47cdB 33.29±0.81aA
A29 41.08±0.91cC 58.96±1.43dB 20.34±0.11eDE
G36 31.29±0.76dD 65.49±1.59bcB 24.56±0.60cBC
BL23 41.23±1.00cC 61.30±0.32bcdB 18.47±0.45eE
A86 29.88±0.72dD 66.92±1.18bAB 24.09±0.25cC
HL93 42.60±0.22cC 74.70±1.81aA 27.83±0.67bB
BL77 31.57±0.77dD 64.49±0.67bcdB 20.46±0.50deDE
BL22 59.63±1.45bB 63.24±1.53bcdB 23.43±0.57cCD

表5

低氮胁迫对藜麦渗透调节物质的影响

处理
Treatment
藜麦品系
Quinoa line
可溶性蛋白
Soluble protein (mg/g)
可溶性糖
Soluble sugar (mg/g)
Pro
(μg/g)
CK HL58 6.31±0.26cdCD 1.84±0.07eDE 92.78±3.82cdCDE
G68 6.83±0.28cBC 1.62±0.06fE 90.97±3.14dDE
A29 4.70±0.19eE 2.48±0.10abAB 105.41±4.34bBC
G36 4.17±0.17eE 2.60±0.10aA 110.00±4.53bAB
BL23 3.11±0.13fF 2.21±0.09cdBC 84.78±2.35deE
A86 8.62±0.36aA 2.07±0.08dCD 101.51±5.52bcBCD
HL93 7.60±0.31bB 2.43±0.09abAB 120.04±4.94aA
BL77 5.92±0.24dD 2.35±0.09bcAB 106.37±4.38bB
BL22 5.81±0.20dD 1.60±0.06fE 79.56±3.28eE
LN HL58 5.41±0.13cB 2.41±0.04eE 100.98±2.45cBC
G68 5.21±0.13cdBC 2.58±0.05dCD 70.21±1.70eE
A29 3.85±0.09eD 3.21±0.05abA 114.66±2.78bAB
G36 3.36±0.08efD 3.08±0.04bAB 127.03±3.08aA
BL23 3.18±0.08fD 2.55±0.04dD 94.16±2.28cCD
A86 7.11±0.18bA 2.84±0.04cBC 82.09±1.99dDE
HL93 7.89±0.19aA 2.64±0.05dCD 117.09±3.22abAB
BL77 4.72±0.10dC 3.35±0.06aA 115.02±2.79bAB
BL22 5.74±0.14cB 1.65±0.03fF 82.61±2.00dDE

表6

低氮胁迫对藜麦氮素含量及氮利用效率的影响

处理
Treatment
藜麦品系
Quinoa line
全氮含量
N content (mg/g)
氮积累量(mg/株)
N accumulation (mg/plant)
氮利用效率
N utilization efficiency (g/g)
CK HL58 1.84±0.08bBC 3.17±0.05bB 542.85±22.36efDE
G68 1.68±0.07cCD 2.66±0.13cdC 596.13±24.56deCD
A29 1.22±0.05efF 1.79±0.05eD 823.47±33.92aAB
G36 1.32±0.05eEF 1.74±0.05eD 759.14±31.27bB
BL23 1.16±0.05fF 1.68±0.03eD 859.91±35.42aA
A86 2.07±0.09aA 3.68±0.04aA 483.43±19.91fE
HL93 1.99±0.08abAB 2.81±0.09cC 503.47±20.74fE
BL77 1.63±0.07cdCD 2.51±0.19dC 615.00±25.33cdCD
BL22 1.50±0.06dDE 2.50±0.13dC 665.55±27.41cC
LN HL58 1.60±0.06bB 2.77±0.07aA 624.32±23.63dCD
G68 1.30±0.05dC 2.02±0.03dD 772.96±29.26bB
A29 1.12±0.04eD 1.56±0.03eE 893.52±33.82aA
G36 1.05±0.04eD 1.37±0.07fE 954.84±36.14aA
BL23 1.08±0.04eD 1.55±0.02eE 927.56±35.11aA
A86 1.39±0.05cdC 2.43±0.09bcB 721.43±27.31bcB
HL93 1.80±0.07aA 2.54±0.08bB 556.53±21.06eD
BL77 1.39±0.06cdC 2.13±0.13dCD 718.14±31.97bcBC
BL22 1.44±0.05cBC 2.35±0.07cBC 693.95±21.60cBC

表7

各综合指标载荷系数及累计贡献率

指标
Index
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
可溶性蛋白含量
Soluble protein content
0.711 -0.288 0.243 -0.382
可溶性糖含量
Soluble sugar content
-0.837 -0.133 -0.296 0.393
MDA含量MDA content -0.869 0.419 0.114 0.160
NR活性NR activity 0.930 -0.095 -0.157 -0.176
Pro含量Pro content 0.717 0.412 -0.347 0.010
POD活性POD activity 0.803 0.476 -0.325 -0.030
SOD活性SOD activity 0.403 0.826 -0.260 0.190
根系活力Root activity 0.757 -0.167 -0.548 -0.207
GS活性GS activity 0.618 0.326 0.395 -0.285
GOGTA活性GOGTA activity 0.085 -0.853 0.296 0.315
株高Plant height 0.507 -0.126 0.598 0.531
茎粗Stem diameter 0.494 0.468 0.579 0.239
SPAD 0.523 -0.076 0.748 0.188
Fo -0.839 -0.185 -0.151 -0.425
Fm 0.304 0.343 0.489 -0.698
Fv/Fm 0.815 0.406 0.362 0.029
最大根长
Maximum root length
-0.850 0.079 0.021 0.359
根系平均直径
Root average diameter
-0.274 -0.927 0.169 -0.073
根系表面积Root surface area 0.366 0.370 -0.425 0.567
根系体积Root volume 0.578 -0.388 -0.277 0.145
根系干重Root dry weight -0.903 0.219 -0.078 -0.253
茎叶干重Shoot dry weight 0.244 -0.196 -0.300 -0.415
根冠比Root-shoot ratio -0.856 0.289 0.111 0.042
全氮含量N content 0.886 -0.285 -0.149 0.176
氮积累量N accumulation 0.910 -0.312 -0.204 0.085
氮利用效率
N utilization efficiency
-0.878 0.291 0.196 -0.188
累计贡献率
Cumulative contribute rate (%)
47.463 65.910 75.976 83.959

表8

不同藜麦品系的综合指标值、权重、D值及排序

藜麦品系
Quinoa line
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
D 排序
Ranking
HL58 0.043 -0.166 -2.285 -1.087 0.413 7
G68 -1.492 -1.838 0.258 0.564 0.204 9
A29 0.027 0.316 -0.039 0.944 0.615 5
G36 0.092 1.361 0.548 -0.717 0.655 4
BL23 0.500 -0.638 -0.065 -0.434 0.592 6
A86 -1.655 0.995 0.747 -0.638 0.324 8
HL93 0.914 -0.446 0.751 -0.914 0.699 2
BL77 0.191 0.901 -0.757 1.869 0.682 3
BL22 1.380 -0.483 0.842 0.413 0.835 1
权重Weight 0.558 0.194 0.140 0.108

图4

9个藜麦品系耐低氮能力系统聚类图

[1] 张定一, 张永清, 杨武德, 等. 不同基因型小麦对低氮胁迫的生物学响应. 作物学报, 2006, 32(9):1349-1354.
[2] Diaz C, Salibacolombani V, Loudet O. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiology, 2006, 47:74-83.
doi: 10.1093/pcp/pci225
[3] 张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15):3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
[4] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[5] Zhu Z L, Chen D L. Nitrogen fertilizer use in China:contributions to food production,impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63:117-127.
doi: 10.1023/A:1021107026067
[6] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046.
[7] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494:459-463.
doi: 10.1038/nature11917
[8] 谢孟林, 李强, 查丽, 等. 氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响. 中国生态农业学报, 2015, 23(8):946-953.
[9] 冯云超, 余志江, 霍仕平, 等. 低氮对不同类型玉米品种籽粒产量与品质的影响. 华北农学报, 2016, 31(增1):381-387.
[10] 李强, 马晓君, 程秋博, 等. 氮肥对不同耐低氮性玉米品种氮素吸收利用及氮素平衡的影响. 水土保持学报, 2016, 30(3):171-176,183.
[11] 布哈丽且木·阿不力孜, 白志刚, 黄洁, 等. 氮肥运筹对不同类型水稻产量和氮素吸收的影响. 中国稻米, 2018, 24(4):64-67.
doi: 10.3969/j.issn.1006-8082.2018.04.015
[12] Woldemichael G M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. Journal of Agricultural and Food Chemistry, 2001, 49(5):2327-2332.
doi: 10.1021/jf0013499 pmid: 11368598
[13] Bhargava A, Shukla S, Ohri D, et al. Chenopodium quinoa-An Indian perspective. Industrial Crops and Products, 2006, 23(1):73-87.
doi: 10.1016/j.indcrop.2005.04.002
[14] 申瑞玲, 张亚蕊, 景新俊, 等. 藜麦淀粉-硬脂酸复合物的制备及性质研究. 河南农业科学, 2018, 47(2):135-139.
doi: 10.15933/j.cnki.1004-3268.2018.02.026
[15] 李荣波. 药食同源植物藜麦. 农村百事通, 2018(1):28-28.
[16] 刘珍珍. 海西州藜麦产业发展的现状及建议初探. 青海农林科技, 2017(4):42-43,80.
[17] Schilick G, Bubenheim D L. Quinoa: An emerging “new” crop with potential for CELSS. Washington: National Aeronautics and Space Administration,Ames Research Center, 1993.
[18] Quinoa FAO. An ancient crop to contribute to worldfood security. San Diego:Regional Office for Latin America and the Caribbean, 2011.
[19] 温日宇, 刘建霞, 李顺, 等. 低温胁迫对不同藜麦幼苗生理生化特性的影响. 种子, 2019(5):53-56.
[20] 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9):1797-1804.
[21] 康小华, 沈宝云, 王海龙, 等. 不同氮肥施用量及基追比对藜麦产量及经济性状的影响. 农学学报, 2017, 7(12):34-37.
doi: 10.11923/j.issn.2095-4050.cjas17060002
[22] 陈富, 权小兵, 张小静, 等. 肥料配施对藜麦产量及农艺性状的影响. 农业科技通讯, 2018(10):65-68.
[23] 张志良, 翟伟菁, 李小芳. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009.
[24] 鲍士旦. 土壤农化分析(第2版). 北京: 中国农业出版社, 1986.
[25] 张楚. 苦荞耐低氮基因型的筛选及其生理机制的初步研究. 临汾:山西师范大学, 2018.
[26] 张美俊, 乔治军, 杨武德, 等. 不同糜子品种对低氮胁迫的生物学响应. 植物营养与肥料学报, 2014, 20(3):661-669.
[27] 李强, 罗延宏, 谭杰, 等. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10):1190-1199.
[28] 陈二影, 杨延兵, 秦岭, 等. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016, 49(17):3287-3297.
doi: 10.3864/j.issn.0578-1752.2016.17.004
[29] 匡艺, 李廷轩. 氮素对不同氮效率小黑麦基因型叶片保护酶活性和膜脂过氧化的影响. 草业学报, 2011, 20(6):93-100.
[30] 王贺正, 张均, 吴金芝, 等. 不同氮素水平对小麦旗叶生理特性和产量的影响. 草业学报, 2013, 22(4):69-75.
doi: 10.11686/cyxb20130408
[1] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[2] 陈翠萍, 闫殿海, 张书苗, 左皓南, 高森, 刘洋. 藜麦SSR指纹图谱构建及遗传多样性分析[J]. 作物杂志, 2023, (3): 35–42
[3] 梁萍, 张永清, 张萌, 薛小娇, 李平平, 张文燕, 王丹, 赵刚. PAM施用深度对盐碱胁迫下藜麦生长及生理指标的影响[J]. 作物杂志, 2023, (2): 178–185
[4] 梅丽. 北京藜麦适应性栽培研究进展及展望[J]. 作物杂志, 2022, (6): 14–22
[5] 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 33–41
[6] 李王胜, 王雪倩, 尹希龙, 石杨, 刘大丽, 谭文勃, 兴旺. 甜菜种质资源苗期耐旱性综合评价[J]. 作物杂志, 2022, (6): 54–60
[7] 侯静静, 晋芳, 赵利, 王斌. 16个油用亚麻新品系的农艺及品质性状综合评价[J]. 作物杂志, 2022, (5): 42–48
[8] 吕建珍, 任莹, 王宏勇, 张庭军, 马建萍, 赵凯. 264份谷子主要育成品种(系)表型多样性综合评价[J]. 作物杂志, 2022, (4): 22–31
[9] 张春艳, 庄克章, 吴荣华, 李静, 李新新, 王恒, 董西辰, 徐赓, 吴本华. 基于熵值赋权的DTOPSIS法对鲁南地区11个饲用燕麦品种的综合评价研究[J]. 作物杂志, 2022, (4): 62–68
[10] 徐世英, 王宁, 程皓, 冯万军. 玉米杂交种及其亲本苗期性状对低氮胁迫的动态响应[J]. 作物杂志, 2022, (4): 90–98
[11] 王思宇, 左文博, 朱凯莉, 郭慧敏, 邢宝, 郭雨晴, 包玉英, 杨修仕, 任贵兴. 71份藜麦品种资源的农艺性状及营养品质分析与评价[J]. 作物杂志, 2022, (3): 63–72
[12] 郜战宁, 王树杰, 冯辉, 薛正刚, 杨永乾, 宋晓朋, 介元芬. 二棱大麦品种(系)的综合评价[J]. 作物杂志, 2022, (1): 70–76
[13] 王雨婷, 苗兴芬, 王帝. 萌发期耐莠去津谷子种质资源筛选及评价[J]. 作物杂志, 2021, (5): 194–204
[14] 刘歆, 杨芳, 邓军波, 汪嫒嫒, 何念, 陈艳. 江汉平原大豆品系表型分析及综合评价[J]. 作物杂志, 2021, (5): 57–63
[15] 郭强, 马文清, 秦昌鲜, 施泽升, 彭崇, 闭德金, 何洪良, 梁永检, 唐利球. 甘蔗新品系的DTOPSIS法综合评价[J]. 作物杂志, 2021, (4): 32–37
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!