作物杂志,2024, 第3期: 238–246 doi: 10.16035/j.issn.1001-7283.2024.03.032

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

陕北风沙草滩区覆膜对玉米根际土壤微生物群落的影响

李佳奇(), 史建国(), 陈启航, 常风云, 段义忠, 柴乖强, 贾磊, 陈涛   

  1. 榆林学院/陕西省陕北矿区生态修复重点实验室,719000,陕西榆林
  • 收稿日期:2023-02-20 修回日期:2023-05-06 出版日期:2024-06-15 发布日期:2024-06-18
  • 通讯作者: 史建国,研究方向为农田生态及可持续发展,E-mail:378279015@qq.com
  • 作者简介:李佳奇,研究方向为马铃薯及饲用作物遗传育种,E-mail:1097243283@qq.com
  • 基金资助:
    陕西省重点研发计划(2022FP-35);陕西省教育厅重点科研计划(22JS044);榆林市科技局项目(CXY-2019- 106-5);榆林学院博士科研启动基金(18GK08)

Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province

Li Jiaqi(), Shi Jianguo(), Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao   

  1. Yulin University / Key Laboratory of Ecological Restoration of Mining Areas in Northern Shaanxi Province, Yulin 719000, Shaanxi, China
  • Received:2023-02-20 Revised:2023-05-06 Online:2024-06-15 Published:2024-06-18

摘要:

为明确不同覆膜条件下玉米根际土壤微生物群落结构变化,收集6份不同覆膜条件下的玉米根际土壤,利用高通量测序技术对其微生物样品的基因区进行测序,分析样本中根际土壤细菌和真菌群落结构特征,揭示覆膜对玉米根际土壤质量的影响。结果表明,覆膜条件下样品细菌和真菌的总OTU(分类操作单元)数高于未覆膜条件。Chaol和Shannon指数表明,覆膜下细菌和真菌群落的丰富度和多样性均高于未覆膜处理。从门水平上来看,农田覆膜可降低变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)的相对丰度,提高酸杆菌门(Acidobacteriota)、芽单胞菌门(Gemmatimonadota)、子囊菌门(Ascomycota)和球囊菌门(Glomeromycota)的相对丰度;从属水平上来看,农田覆膜使玉米根际土壤富集了细菌中的MND1、嗜盐粘细菌(Haliangium)、杆菌属(Metagenome)、RB41、鞘脂单胞菌属(Sphingomonas)和真菌中的外瓶霉属(Exophiala)、绿僵菌属(Metarhizium)、球孢毛葡孢霉属(Botryotrichum)、锥毛壳属(Coniochaeta)、瓶毛壳属(Lophotrichus)、镰刀菌属(Fusarium)等菌群。研究揭示了农田覆膜对玉米根际土壤生态效应的影响,为筛选和开发利用有益微生物提供依据。

关键词: 覆膜, 玉米根际土壤, 高通量测序, 微生物群落

Abstract:

In order to clarify the changes of microbial community structure in maize rhizosphere soil under different mulching conditions, six samples of maize rhizosphere soil under different mulching conditions were collected. High-throughput sequencing technology was used to sequence the gene regions of microbial samples of maize rhizosphere soil, so as to analyze the community structure characteristics of bacteria and fungi in the sample rhizosphere soil, and reveal the influence of mulching soil on the quality of maize rhizosphere soil. The results showed that the total OTU number of bacteria and fungi in the field covered with mulch were higher than that in the field without mulching. Chaol and Shannon indexes revealed that the richness and diversity of fungi and bacteria community in the rhizosphere soil of maize under mulching were higher than those without mulching. At the phylum level, the relative abundance of Proteobacteria and Bacteroidota were decreased and that of Acidobacteria, Gemmatimonadota, Ascomycota and Glomeromycota were increased. At the genus level, film mulching caused the enrichment of MND1, Haliangium, Metagenome, RB41, Sphingomonas in bacteria and Exophiala, Metarhizium, Botryotrichum, Coniochaeta, Lophotrichus, Fusarium in fungi in the rhizosphere soil of maize. This study presented the scientific theoretical foundation for the selection, use, and exploitation of beneficial microorganisms in maize production. It also demonstrated the impact of agricultural mulching on the ecological effect of maize rhizosphere soil.

Key words: Film mulching, Maize rhizosphere soil, High-throughput sequencing, Microbial community

图1

真菌(a)和细菌(b)样品稀释性曲线图

图2

真菌(a)和细菌(b)样品的OTU数量

图3

玉米根际土壤真菌OTU-Venn图

图4

玉米根际土壤细菌OTU-Venn图

表1

各样品根际土壤真菌和细菌多样性指数

项目
Item
处理
Treatment
样品
Sample
Chao1指数
Chao1 index
观测深度
Observation depth
观测OTU数
Observed OTU species
系谱多样指数
PD whole tree
Shannon指数
Shannon index
Simpson指数
Simpson index
真菌Fungus M M1 2287.73 1.00 1719.90 267.19 5.88 0.94
M2 2452.34 1.00 1883.00 290.15 6.18 0.95
M3 2365.02 1.00 1824.00 282.20 6.16 0.94
T T1 2227.37 1.00 1739.00 278.99 6.10 0.95
T2 2190.50 1.00 1611.00 261.28 5.83 0.95
T3 2253.29 1.00 1615.00 252.55 5.78 0.94
细菌Bacteria M M1 8258.27 0.99 6926.00 420.85 10.71 1.00
M2 8434.04 0.99 7110.00 429.44 10.73 1.00
M3 8314.83 0.99 7038.00 429.44 10.72 1.00
T T1 8352.32 0.99 6942.00 425.28 10.54 1.00
T2 8420.07 0.99 7008.00 423.80 10.68 1.00
T3 8330.19 0.99 7066.00 426.08 10.72 1.00

图5

不同样本的细菌门分类水平群落相对丰度

表2

不同覆膜条件下各样品细菌在门分类水平的占比

处理
Treatment
样品
Sample
变形菌门
Proteobacteria
酸杆菌门
Acidobacteriota
放线菌门
Actinobacteriota
芽单胞菌门
Gemmatimonadota
拟杆菌门
Bacteroidota
绿弯菌门
Chloroflexi
粘菌门
Myxococcota
浮霉菌门
Planctomycetota
其他
Others
M M1 33.71 10.44 10.26 10.30 8.37 5.71 5.33 4.35 8.08
M2 33.38 12.09 8.25 10.50 6.89 6.16 5.62 5.23 8.38
M3 34.72 10.57 10.96 7.82 7.02 7.28 5.01 5.15 8.36
均值 33.94 11.03 9.82 9.54 7.43 6.38 5.32 4.91 8.27
T T1 37.23 10.13 5.92 9.13 11.59 4.91 5.12 4.10 7.38
T2 37.37 8.30 12.02 8.28 7.55 6.77 4.76 3.75 8.46
T3 33.93 10.43 11.71 7.49 6.25 8.92 4.07 5.36 8.82
均值 36.17 9.62 9.88 8.30 8.46 6.87 4.65 4.40 8.22

图6

不同样本的真菌门分类水平群落相对丰度

表3

不同覆膜条件下各样品真菌在门分类水平的占比

处理
Treatment
样品
Sample
子囊菌门
Ascomycota
未确定
Unidentified
担子菌门
Basidiomycota
被孢菌门
Mortierellomycota
球囊菌门
Glomeromycota
其他
Others
M M1 78.16 10.57 4.04 4.34 2.10 0.79
M2 65.22 10.14 18.47 3.24 1.90 1.04
M3 75.12 10.94 6.04 4.25 2.28 1.37
均值 72.83 10.55 9.51 3.94 2.09 1.07
T T1 65.82 13.63 13.44 4.01 1.71 1.40
T2 66.68 17.82 8.00 4.36 1.75 1.39
T3 69.21 16.79 6.84 3.54 2.05 1.58
均值 67.24 16.08 9.43 3.97 1.83 1.46

图7

不同样本的细菌属分类水平群落相对丰度

表4

不同覆膜条件下各样品细菌在属分类水平的占比

处理
Treatment
样品
Sample
未确定
Unidentified
未分类
Unclassified
未培养菌
Uncultured-bacterium
MND1 嗜盐粘细菌
Haliangium
杆菌属
Metagenome
RB41 溶杆菌属
Lysobacter
鞘脂单胞菌属
Sphingomonas
其他
Others
M M1 23.37 18.90 11.07 2.20 1.57 1.53 1.31 0.84 1.06 38.15
M2 25.68 18.13 10.62 2.28 1.82 1.69 1.79 0.78 1.09 36.14
M3 22.13 18.22 10.84 1.73 1.46 1.46 1.29 0.84 1.10 40.95
均值 23.72 18.42 10.84 2.07 1.61 1.56 1.46 0.82 1.08 38.41
T T1 21.99 19.00 9.52 2.15 1.72 1.55 1.74 1.77 0.98 39.58
T2 21.43 18.69 10.15 1.95 1.42 1.24 0.87 1.24 0.93 42.08
T3 21.62 18.59 11.01 1.79 1.32 1.25 1.18 1.02 0.94 41.30
均值 21.68 18.76 10.23 1.96 1.49 1.34 1.26 1.34 0.95 40.98

图8

不同样本的真菌属分类水平群落相对丰度

表5

不同覆膜条件下各样品真菌在属分类水平的占比

处理
Treatment
样品
Sample
未确定
Unidentified
外瓶霉属
Exophiala
绿僵菌属
Metarhizium
帚枝霉属
Sarocladium
球孢毛葡孢霉属
Botryotrichum
锥毛壳属
Coniochaeta
瓶毛壳属
Lophotrichus
镰刀菌属
Fusarium
其他
Others
M M1 28.18 9.90 16.97 2.66 5.94 13.13 5.01 2.44 15.78
M2 36.62 10.83 15.48 2.92 6.18 3.38 2.73 2.97 18.88
M3 25.80 16.68 17.62 5.20 5.44 2.16 4.94 1.98 20.18
均值 30.20 12.47 16.69 3.59 5.85 6.22 4.23 2.47 18.28
T T1 52.73 6.40 1.49 15.03 1.36 0.32 1.56 1.67 19.43
T2 46.16 10.17 5.04 14.96 1.58 0.28 2.37 1.75 17.68
T3 44.55 11.49 3.68 15.80 1.92 0.26 2.40 1.44 18.45
均值 47.82 9.36 3.40 15.26 1.62 0.29 2.11 1.62 18.52
[1] Zhang Y C, Liu P, Wang C, et al. Genome-wide association study uncovers new genetic loci and candidate genes underlying seed chilling-germination in maize. PeerJ, 2021, 6(9):e11707
[2] 邓潜鑫. 施磷对紫色土榨菜―玉米根际微生物群落结构的影响. 重庆: 西南大学, 2022.
[3] 刘泉成. 玉米根际微生物群落特征分析及生防菌筛选. 北京: 中国农业科学院, 2018.
[4] 刘美霞, 刘秀, 赵燕, 等. 地膜覆盖对旱作春玉米农田土壤微生物碳源代谢影响研究. 生态学报, 2022, 42(22):1-13.
[5] 张旭东. 覆膜种植和施肥对半干旱地区资源高效利用及玉米生产持续性的影响机制. 杨凌: 西北农林科技大学, 2020.
[6] Li C J, Xiong Y W, Cui Z, et al. Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China. Agricultural Water Management, 2020, 232(1):106065.
[7] Lang Q, Li Y B, Xu Y Z, et al. Effect of film mulching and microbial inoculation on maize growth and water use efficiency under drought stress. The Journal of Applied Ecology, 2018, 29 (9):2915-2924.
[8] Sloan S S, Lebeis S L. Exercising influence: distinct biotic interactions shape root microbiomes. Current Opinion in Plant Biology, 2015, 26(8):32-36.
[9] Coats V C, Rumpho M E. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 2014, 5(5):368.
[10] Shimurah H, Sadamoto M, Matsuura M, et al. Characterization of mycorrhizal fungi isolated from the threatened cypripedium macranthos, in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza, 2009, 19 (8):525-534.
doi: 10.1007/s00572-009-0251-4 pmid: 19449040
[11] Takakura Y. Tricholoma matsutake fruit bodies secrete hydrogen peroxide as a potent inhibitor of fungal growth. Canadian Journal of Microbiology, 2015, 61(6):447-450.
[12] Shaikh M N, Kasabe U I, Mokat D N. Influence of rhizosphere fungi on essential oil production and menthol content in Mentha arvensis L.. Journal of Essential Oil-Bearing Plants, 2018, 21(4):1076-1081.
[13] Dong W Y, Si P F, Liu E K, et al. Influence of film mulching on soil microbial community in a rainfed region of northeastern China. Scientific Reports, 2017, 7(1):8468.
doi: 10.1038/s41598-017-08575-w pmid: 28814759
[14] Wang J, Huang M K, Wang Q, et al. LDPE microplastics significantly alter the temporal turnover of soil microbial communities. The Science of the Total Environment, 2020, 726(7):138682.
[15] 李华伟, 罗文彬, 许国春, 等. 基于高通量测序的福建北部马铃薯晚疫病株根际土壤细菌群落分析. 微生物学通报, 2022, 49(3):1017-1029.
[16] 邱丽丽, 张佳宝, 赵炳梓. 土壤干旱对两品种小麦根际土壤微生物群落组成和酶活性的影响. 干旱区资源与环境, 2022, 36(2):116-122.
[17] Peiffer J A, Spor A, Koren O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6548-6553.
[18] Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):911-920.
[19] Li X G, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. The ISME Journal, 2019, 13(3):738-751.
[20] 朱琳, 曾椿淋, 李雨青, 等. 基于高通量测序的大豆连作土壤细菌群落多样性分析. 大豆科学, 2017, 36(3):419-424.
[21] Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098):1084-1087.
doi: 10.1126/science.1224304 pmid: 22936776
[22] Traoré O Y A, Kiba D I, Arnold M C, et al. Fertilization practices alter microbial nutrient limitations after alleviation of carbon limitation in a Ferric Acrisol. Biology and Fertility of Soils, 2016, 52(2):177-189.
[23] 宋秋华. 半干旱黄土高原区地膜覆盖春小麦土壤微生物特征与养分转化. 兰州: 兰州大学, 2006.
[24] 段翠花. 不同类型地膜对宁南山区农田土壤环境的影响研究. 杨凌: 西北农林科技大学, 2022.
[25] 丁柳屹, 王森, 付鑫. 覆盖条件下旱作春玉米农田土壤细菌群落结构分析. 地球环境学报, 2019, 10(6):590-600.
[26] Huang F Y, Liu Z H, Mou H Y, et al. Effects of different long-term farmland mulching patterns on the loessial soil fungal community in a semiarid region of China. Applied Soil Ecology, 2019, 1:111-119.
[27] 胡志娥, 肖谋良, 丁济娜, 等. 长期覆膜条件下农田土壤微生物群落的响应特征. 环境科学, 2022, 43(10):4745-4754.
[28] 徐雪雪. 基于高通量测序的马铃薯沟垄覆膜连作土壤微生物多样性分析. 兰州: 甘肃农业大学, 2016.
[29] Yu P, Wang C, Baldauf J A, et al. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. The New Phytologist, 2018, 217 (3):1240-1253.
[30] Voges M J E E E, Bai Y, Schulze-Lefert P, et al. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proceeding of the National Academy of Sciences of the United States of America, 2019, 116(25):12558- 12565.
[31] Cotton T E A, Pétriacq P, Cameron D D, et al. Metabolic regulation of the maize rhizobiome by benzoxazinoids. The ISME Journal, 2019, 13(7):1647-1658.
[32] Yu P, He X, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 2021, 7(4):481-499.
doi: 10.1038/s41477-021-00897-y pmid: 33833418
[33] 李越鲲, 孙燕飞, 雷勇辉, 等. 枸杞根际土壤真菌群落多样性的高通量测序. 微生物学报, 2017, 57(7):1049-1059.
[34] 付亚娟, 张江丽, 侯晓强. 大花杓兰根际与非根际土壤真菌多样性的高通量测序分析. 西北农业学报, 2019, 28(2):253-259.
[35] 黄方园. 覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响. 杨凌: 西北农林科技大学, 2020.
[36] Fan W, Wu J G. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. The Journal of Microbiology, 2020, 58(8): 657-667.
[37] Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35):10967- 10972.
[1] 杜超, 李军, 王刚, 邬雪瑞, 任志远, 张俊峰, 包海柱, 温埃清. 河套灌区中度盐碱地高垄覆膜滴灌对向日葵生长及水分利用的影响[J]. 作物杂志, 2024, (1): 111–116
[2] 杨彦明, 周祎, 张子健, 赵洋, 李雅剑, 庞雅祺, 王亚迅, 韩雯毓, 刘景辉. 腐殖酸与不同耕作措施对盐碱土碳库和微生物群落结构的影响[J]. 作物杂志, 2024, (1): 157–165
[3] 敖金成, 王政, 杨启港, 李智, 韦建玉. 土壤细菌群落结构及功能多样性对烤烟连作的响应[J]. 作物杂志, 2023, (6): 127–134
[4] 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188–194
[5] 刘素军, 蒙美莲, 苏日古嘎. 干旱胁迫及复水对马铃薯糖代谢途径中基因表达影响的研究[J]. 作物杂志, 2023, (1): 38–45
[6] 孙子欣, 蔡柏岩. 连作对土壤微生物菌群影响及修复研究进展[J]. 作物杂志, 2022, (6): 7–13
[7] 徐燕, 牛俊峰, 陈利军, 王世强, 董忠民, 王喆之. 基于高通量测序技术研究栽培苍术根际土壤微生物变化[J]. 作物杂志, 2022, (5): 221–228
[8] 王初亮, 宋文峰, 关罗浩, 谢晋, 黄浩, 李旺阳, 王维. 云南红河烟区覆膜方式及移栽苗龄对烤烟产量和品质形成的影响[J]. 作物杂志, 2021, (6): 95–100
[9] 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 1–5
[10] 胡启国, 刘亚军, 王文静, 王祁, 王红刚, 储凤丽. 甘薯轮作与间作对根际土壤微生物群落的影响[J]. 作物杂志, 2021, (5): 153–159
[11] 刘阿康, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 高甜甜, 王玉娇, 阚茗溪, 赵广才, 常旭虹. 苗期调控对晚播小麦产量及氮素利用的影响[J]. 作物杂志, 2021, (2): 116–123
[12] 张晓娟, 张尚沛, 程炳文, 罗世武, 王勇, 杨军学, 王晓军. 旱地糜子生长、产量及土壤环境对不同覆膜种植方式的响应[J]. 作物杂志, 2021, (2): 124–129
[13] 郭笑恒, 魏烁果, 王晓丽, 徐锐, 韩丹, 许自成. 不同覆膜种类和还苗期灌溉方式对襄阳山区烟草生长发育的影响[J]. 作物杂志, 2020, (5): 154–163
[14] 梁晓红,张瑞栋,黄敏佳,刘静,曹雄. 覆膜与施氮互作对高粱产量及水氮利用效率的影响[J]. 作物杂志, 2019, (5): 135–142
[15] 闫威,李国龙,李智,曹阳,张少英. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响[J]. 作物杂志, 2019, (4): 100–106
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!