作物杂志,2024, 第5期: 212–219 doi: 10.16035/j.issn.1001-7283.2024.05.030

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮肥与生物炭互作对设施番茄生长及根结线虫病害的影响

周琦(), 吴芳, 王振龙, 徐志鹏, 邓超超, 施志国, 张靖, 宿翠翠, 余亚琳, 周彦芳()   

  1. 甘肃省农业工程技术研究院,730000,甘肃兰州
  • 收稿日期:2024-03-27 修回日期:2024-06-20 出版日期:2024-10-15 发布日期:2024-10-16
  • 通讯作者: 周彦芳,主要从事作物高效栽培与地力提升研究,E-mail:151245056@qq.com
  • 作者简介:周琦,主要从事作物高效栽培与水肥调控研究,E-mail:1610821576@qq.com
  • 基金资助:
    甘肃省青年科技基金计划(21JR7RA750);甘肃省青年科技基金计划(23JRRH0018);甘肃省民生科技专项―科技特派员(基地)专项(23CXNH0019)

Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes

Zhou Qi(), Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang()   

  1. Gansu Academy of Agri-Engineering Technology, Lanzhou 730000, Gansu, China
  • Received:2024-03-27 Revised:2024-06-20 Online:2024-10-15 Published:2024-10-16

摘要:

为探索氮肥和生物炭互作对番茄生长及根结线虫病害的影响,筛选合适的氮肥和生物炭的施用量,采用盆栽试验,设置二因素(氮肥和生物炭)3水平完全随机区组试验设计,研究3个施氮量(N1:0 mg/kg土,N2:200 mg/kg土,N3:400 mg/kg土)和3个施生物炭量(C1:0 g/kg土,C2:2 g/kg土,C3:4 g/kg土)不同组合处理对番茄生长、产量品质、光合特性及根结线虫指标影响。 结果表明,施氮肥、生物炭和二者互作效应对番茄生长、产量品质、光合特性及根结线虫指标影响均达到极显著水平(P<0.01)或显著水平(P<0.05)。随着施氮量和生物炭量的增加,番茄生长、光合特性、产量及品质均呈先增加后降低的趋势。根结数、根结线虫数、虫卵数呈现先降低后升高的趋势,N2C3处理下达到最低值;N2C3处理下叶面积、净光合速率、产量、维生素C等指标显著高于其他处理,根结线虫数和虫卵数显著低于其他处理。因此,在甘肃省河西地区已感染根结线虫病害的设施土壤(全氮1.52 g/kg,有效磷191.9 mg/kg,速效钾323 mg/kg)中,当氮肥的施用量为200 mg/kg土,生物炭的施用量为4 g/kg土时利于番茄生长,品质较优,对根结线虫病害有较好的防效。

关键词: 番茄, 生物炭, 产量, 品质, 光合特性, 根结线虫

Abstract:

To explore the effects of combined application of nitrogen fertilizer and biochar interaction on tomato growth and root-knot nematode disease, a suitable nitrogen fertilizer application rates and biochar application rates were screened. A two-factor three-level randomized block pot experiment design was adopted to study three nitrogen application rates (N1: 0 mg/kg soil, N2: 200 mg/kg soil, N3: 400 mg/kg soil) and three biochar application rates (C1: 0 g/kg soil, C2: 2 g/kg soil, C3: 4 g/kg soil) were used this study. The effects of different treatments on tomato growth, yield, quality, photosynthetic characteristics and root-knot nematode indicators were analyzed under different combinations of treatments. The results showed that the effects of nitrogen fertilizer, biochar and their interaction on tomato growth, yield and quality, photosynthetic characteristics and root-knot nematode indicators all reached extremely significant (P < 0.01) or significant (P < 0.05) level. With the increase of nitrogen fertilizer and biochar application, the growth, photosynthetic characteristics, yield and quality of tomatoes were showed a trend of firstly increased and then decreased. The number of root nodules, root-knot nematodes and eggs were showed a trend of firstly decreased and then increased, reached the lowest value under the N2C3 treatment combination; The leaf area, net photosynthetic rate, yield and vitamin C of the N2C3 treatment combination were reached significant than other treatment combinations. The number of root- knot nematodes and eggs were significantly lower than other treatment combinations. Therefore, in the facility soil (total nitrogen 1.52 g/kg, available phosphorus 191.9 mg/kg, and available potassium 323 mg/kg) infected with root-knot nematode disease in the Hexi area of Gansu province, the condition of 200 mg/kg nitrogen fertilizer of soil and 4 g/kg biochar of soil was conducive to tomato growth and quality, and had a good control effect on root-knot nematode disease.

Key words: Tomato, Biochar, Yield, Quality, Photosynthetic characteristics, Root-knot nematode

表1

氮肥、生物炭互作对番茄株高、茎粗和叶面积的影响

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (cm2)
N1C1 37.33±1.02c 8.10±0.19e 10.43±0.09g
N1C2 37.90±1.40c 10.21±0.19bc 12.29±0.21f
N1C3 39.00±0.60c 9.73±0.34bcd 13.33±0.17e
N2C1 47.30±1.06ab 9.35±0.13d 12.48±0.19f
N2C2 47.77±0.75ab 9.88±0.20bcd 14.17±0.10d
N2C3 49.67±0.59a 11.02±0.32a 16.31±0.14b
N3C1 36.37±2.92c 8.40±0.08e 16.99±0.09a
N3C2 44.07±2.33b 10.40±0.25ab 15.83±0.24bc
N3C3 45.33±2.12ab 9.51±0.22cd 15.63±0.23c

表2

氮肥、生物炭互作对番茄光合特性的影响

处理Treatment Pn [μmol/(m2?s)] Gs [mmol/(m2?s)] Ci (μmol/mol) Tr [mmol/(m2?s)] SPAD
N1C1 8.26±0.16d 0.38±0.03d 187.80±2.69e 2.58±0.04e 45.33±1.76c
N1C2 11.76±0.08c 0.42±0.02d 244.36±2.49c 3.38±0.33cd 47.20±0.87c
N1C3 11.38±0.07c 0.50±0.03c 216.24±2.19d 3.04±0.28de 44.67±2.91c
N2C1 11.56±0.13c 0.55±0.03bc 264.42±2.68b 3.71±0.11bcd 55.00±1.15b
N2C2 12.37±0.05b 0.61±0.03ab 285.44±2.99a 4.16±0.33abc 60.67±2.03ab
N2C3 15.98±0.14a 0.67±0.02a 294.55±4.28a 4.75±0.08a 65.00±2.52a
N3C1 12.41±0.20b 0.51±0.01c 255.98±8.23bc 3.57±0.25bcd 59.67±0.88ab
N3C2 12.79±0.50b 0.54±0.02bc 193.88±2.67e 4.33±0.10ab 62.67±1.20a
N3C3 11.14±0.07c 0.60±0.02ab 253.24±1.66bc 3.86±0.43bcd 63.67±2.33a

表3

氮肥、生物炭互作对番茄产量及品质的影响

处理
Treatment
产量(g/株)
Yield (g/plant)
单果重
Single fruit weight (g)
单果直径
Single fruit diameter (mm)
番茄红素
Lycopene (mg/kg)
可溶性糖
Soluble sugar (%)
Vc
(mg/kg)
N1C1 346.13±7.22e 74.86±2.57d 39.43±1.28e 0.54±0.02f 3.35±0.08e 78.19±0.48h
N1C2 355.21±5.79de 86.95±2.53c 57.90±1.35c 0.65±0.02e 4.06±0.05cd 88.92±0.39g
N1C3 366.73±5.98d 95.09±1.55b 51.80±1.55d 0.82±0.01d 4.30±0.05b 99.54±0.23f
N2C1 411.24±2.95c 94.73±2.64b 55.04±1.27cd 0.75±0.03d 3.97±0.10d 88.08±0.58g
N2C2 464.11±3.22b 101.42±2.05b 65.67±1.66b 1.09±0.05b 4.22±0.06bc 125.26±0.50d
N2C3 498.27±4.74a 111.54±2.97a 73.78±1.00a 1.32±0.03a 4.80±0.06a 150.20±0.55a
N3C1 479.46±5.04b 94.42±1.96b 72.42±1.45a 1.23±0.03a 4.09±0.05cd 132.15±0.46c
N3C2 479.50±3.62b 99.26±2.02b 72.48±1.45a 1.01±0.04bc 4.66±0.06a 141.16±0.51b
N3C3 463.84±4.33b 97.20±1.64b 65.62±1.39b 0.96±0.03c 4.21±0.05bc 115.28±0.50e

表4

氮肥、生物炭互作对番茄根结线虫的影响

处理Treatment 根重Root weight (g) 根结数Number of root-knots 线虫数Number of nematodes 虫卵数Number of eggs
N1C1 29.48±0.48c 529.33±4.70a 602.67±5.36a 4812.67±51.40a
N1C2 31.21±2.17c 523.00±7.51ab 532.00±6.43c 4338.33±62.65b
N1C3 34.27±2.59c 510.00±4.16ab 511.00±5.29d 4130.67±54.91c
N2C1 61.80±2.17b 446.33±8.57d 534.67±6.57c 3713.00±80.65ef
N2C2 66.50±2.21ab 403.00±6.51f 493.00±9.07e 3636.67±38.52f
N2C3 73.53±4.22a 388.67±5.24f 454.33±4.70f 3240.67±41.95g
N3C1 60.76±3.07b 475.00±7.37c 528.33±4.33c 3890.33±44.21de
N3C2 65.42±2.25ab 425.67±8.51e 500.33±4.91de 4024.67±58.72cd
N3C3 63.85±4.32b 507.33±1.20b 572.00±1.15b 4470.67±86.90b

表5

氮肥、生物炭和二者互作对番茄生长、产量、品质、光合特性及根结线虫指标影响

项目
Item
因素Factor
施氮量
Nitrogen
rate (N)
施生物炭量
Biochar
rate (C)
互作
效应
(N×C)
株高Plant height + + + ns
茎粗Stem diameter + + + + + +
叶面积Leaf area + + + + + +
Pn + + + + + +
Gs + + + + ns
Ci + + + + + +
Tr + + + ns
SPAD + + + ns
产量Yield + + + + + +
单果重Single fruit weight + + + + +
单果直径Single fruit diameter + + + + + +
番茄红素Lycopene + + + + + +
可溶性糖Soluble sugar + + + + + +
Vc + + + + + +
根重Root weight + + + ns
根结数Number of root-knots + + + + + +
线虫数Number of nematodes + + + + + +
虫卵数Egg mass + + + + + +

表6

番茄生长、产量、品质、光合特性及根结线虫指标相关性分析

指标Index SD LA SPAD Y L SS Vc Pn Gs Ci Tr PK NN
PH 0.502** 0.367 0.616** 0.526** 0.404* 0.486* 0.407* 0.469* 0.740** 0.576** 0.662** -0.692** -0.448*
SD 0.416* 0.365 0.345 0.384* 0.799** 0.484* 0.696** 0.446* 0.350 0.567** -0.533** -0.751**
LA 0.804** 0.908** 0.905** 0.797** 0.935** 0.750** 0.704** 0.435* 0.712** -0.572** -0.599**
SPAD 0.907** 0.745** 0.599** 0.798** 0.560** 0.717** 0.507** 0.727** -0.666** -0.410*
Y 0.906** 0.666** 0.916** 0.661** 0.755** 0.502** 0.738** -0.738** -0.535**
L 0.707** 0.927** 0.786** 0.704** 0.591** 0.660** -0.705** -0.692**
SS 0.806** 0.817** 0.667** 0.365 0.707** -0.643** -0.833**
Vc 0.797** 0.680** 0.387* 0.736** -0.734** -0.710**
Pn 0.669** 0.591** 0.711** -0.698** -0.845**
Gs 0.645** 0.700** -0.707** -0.582**
Ci 0.524** -0.559** -0.521**
Tr -0.758** -0.655**
RK 0.797**
[1] Chen Y, Huang B, Hu W, et al. Environmental assessment of closed greenhouse vegetable production system in Nanjing,China. Journal of Soils & Sediments, 2013, 13(8):1418-1429.
[2] Guo H J, Liu J X, Zhang Y, et al. Significant acidification in major chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[3] 吕昊峰, 王亚芳, 李国元, 等. 施氮量和土壤灭菌对根结线虫侵染番茄根系的影响. 生态学杂志, 2019, 38(8):2450-2455.
[4] 田永强, 王敬国, 高丽红. 设施菜田土壤微生物学障碍研究进展. 中国蔬菜, 2013(20):1-9.
[5] 吴超群, 杨泽茂, 吴才君, 等. 设施蔬菜根结线虫危害及其防控机制研究进展. 北方园艺, 2018(11):164-172.
[6] 余海英, 李廷轩, 张锡洲. 温室栽培系统的养分平衡及土壤养分变化特征. 中国农业科学, 2010, 43(3):514-522.
[7] Min J, Zhao X, Shi W, et al. Nitrogen balance and loss in a greenhouse vegetable system in southeastern china. Pedosphere, 2011, 21(4):464-472.
[8] He F, Chen Q, Jiang R, et al. Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China. Nutrient Cycling in Agroecosystems, 2007, 77(1):1-14.
[9] 沙海宁, 孙权, 李建设, 等. 不同施氮量对设施番茄生长与产量的影响及最佳用量. 西北农业学报, 2010, 19(3):104-108.
[10] 韩雪, 曲梅, 李银坤, 等. 不同施肥水平对温室番茄生长、氮吸收及产量品质的影响. 中国土壤与肥料, 2021(2):162-169.
[11] 赵耀东, 张传忠. 氮肥减量施加生物炭对花生幼苗生理特性及根系生长的影响. 江苏农业科学, 2023, 51(22):100-106.
[12] Hu C, Qi Y. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. European Journal of Soil Biology, 2010, 46(3/4):230-236.
[13] Ruan W B, Sang Y, Chen Q, et al. The response of soil nematode community to nitrogen,water,and grazing history in the Inner Mongolian steppe,China. Ecosystems, 2012, 15(7):1121-1133.
[14] 娄翼来, 李慧, 姜勇, 等. 设施菜地长期施肥对土壤线虫群落结构和多样性的影响. 土壤通报, 2013, 44(1):106-109.
[15] 严陶韬, 高婷, 周之栋, 等. 基于文献计量的生物炭土壤效应分析. 江苏农业科学, 2021, 49(4):191-199.
[16] 唐政, 邱建军, 邹国元, 等. 有机种植条件下水肥管理对氮素淋洗和氮素平衡的影响研究. 中国土壤与肥料, 2010(1):19-24.
[17] 张瑞花, 兰超杰, 刘雯, 等. 生物炭对反季节露地樱桃番茄生长及产量品质的影响. 分子植物育种, 2019, 17(14):4831-4839.
[18] 刘国玲, 王宏伟, 蒋健, 等. 生物炭对郑单958生理生化指标及产量的影响. 玉米科学, 2016, 24(4):105-109.
[19] Xiao K Z, Qi L, Wen J L, et al. Soil ematode response to biochar addition in a Chinese wheat field. Pedosphere, 2013, 23(1):98-103.
[20] 闫芳芳, 曾庆宾, 官宇, 等. 猪屎豆与淡紫拟青霉联合防治烟草根结线虫病的效果评价. 中国农学通报, 2018, 34(9):136-140.
doi: 10.11924/j.issn.1000-6850.casb17100096
[21] 翟鹏飞, 李受鹏, 覃丽霞, 等. 秸秆与生物炭配施对樱桃番茄生长及产量品质的影响. 分子植物育种, 2022, 20(21):7216-7223.
[22] 张寅寅, 黑多尔, 刘玥婷, 等. 荷兰进境百合种球中线虫的分离及分子鉴定. 农业环境科学学报, 2022, 41(12):2805-2809.
[23] 陈康. 密度和氮肥互作对单粒精播花生SPAD值、植株和产量性状的影响. 中国油料作物学报, 2021, 43(6):1070-1076.
doi: 10.19802/j.issn.1007-9084.2020270
[24] 曾博玲, 孙权, 刘喆, 等. 不同施氮量对樱桃番茄生长、品质和氮素积累量的影响. 江苏农业科学, 2024, 52(1):148-54.
[25] 景博, 牛宁, 张文龙, 等. 不同施氮量对加工番茄生长及土壤氮素平衡的影响. 新疆农业科学, 2020, 57(10):1830-1838.
doi: 10.6048/j.issn.1001-4330.2020.10.008
[26] Steiner C, Teixeira G W, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 2007, 291(1/2):275-290.
[27] 李欣雨, 张川, 闫浩芳, 等. 生物炭和灌水量对土壤保水性及温室番茄生理特性的影响. 排灌机械工程学报, 2022, 40(3):317-324.
[28] 魏彬萌, 王益权, 李忠徽. 烟杆生物炭对砒砂岩与沙复配土壤理化性状及玉米生长的影响. 水土保持学报, 2018, 32(2):217-222.
[29] 张树衡, 丁德东, 何静, 等. 两种生物肥料配施对再植花椒生长及光合特性的影响. 西北农业学报, 2021, 30(9):1355-1364.
[30] 郑剑超, 张巨松, 闫曼曼, 等. 氮肥追施模式对遮阴下棉花光合效率及产量的影响. 干旱区研究, 2016, 33(5):1036-1042.
[31] 张艳玲, 宋述尧. 氮素营养对番茄生长发育及产量的影响. 北方园艺, 2008(2):25-26.
[32] 张凯, 张勃, 王润元, 等. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响. 生态环境学报, 2021, 30(2):223-232.
doi: 10.16258/j.cnki.1674-5906.2021.02.001
[33] 陈威, 胡学玉, 张阳阳, 等. 番茄根区土壤线虫群落变化对生物炭输入的响应. 生态环境学报, 2015, 24(6):998-1003.
doi: 10.16258/j.cnki.1674-5906.2015.06.014
[34] 牛亚茹, 付祥峰, 邱良祝, 等. 施用生物质炭对大棚土壤特性、黄瓜品质和根结线虫病的影响. 土壤, 2017, 49(1):57-62.
[1] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[2] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[3] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[4] 黄渝岚, 刘文君, 李艳英, 周佳, 周灵芝, 劳承英, 李素平, 申章佑, 韦本辉. 木薯田间作不同密度南瓜对作物产量、经济效益及土地生产力的影响[J]. 作物杂志, 2024, (5): 125–130
[5] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[6] 穆建国, 王鹏, 柳延涛, 崔佳伟, 陈燕芳, 万素梅, 陈贵红. 不同收获期对食葵商品性及产量的影响[J]. 作物杂志, 2024, (5): 146–151
[7] 李洪亮, 孙玉友, 魏才强, 刘丹, 解忠, 程杜娟, 曲金玲, 宋泽, 孟祥海, 赵云彤, 时新瑞. 控灌施肥对寒地粳稻生长及产量和品质的影响[J]. 作物杂志, 2024, (5): 152–158
[8] 曹少娜, 吴利晓, 关耀兵, 王克雄. 不同生物菌肥种类及用量对青花菜产量和品质的影响[J]. 作物杂志, 2024, (5): 159–166
[9] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[10] 刘子琛, 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英. 增密减氮栽培对杂交籼稻稻米品质的影响[J]. 作物杂志, 2024, (5): 194–203
[11] 路佳慧, 王爽, 李云, 郭振清, 王健, 韩玉翠, 林小虎. 减量施氮对春小麦不同器官氮肥利用及籽粒品质的影响[J]. 作物杂志, 2024, (5): 220–227
[12] 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241–246
[13] 董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 29–34
[14] 何嘉辉, 李艳锋, 严天泽, 张选文, 秦鹏, 郭进有, 王凯, 刘雄伦, 杨远柱. 氮肥减施对超级稻玮两优8612产量及品质的影响[J]. 作物杂志, 2024, (5): 73–79
[15] 王一帆, 林涛, 王冬, 王新翠, 张昊, 刘海军, 陈茂光, 汤秋香. 生物降解地膜和灌溉定额对棉田土壤水热特性的影响[J]. 作物杂志, 2024, (5): 86–95
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!