作物杂志,2025, 第2期: 155–161 doi: 10.16035/j.issn.1001-7283.2025.02.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

施氮量对黑小麦物质运转与蛋白质含量的影响

米东明1(), 周佐艳1, 张晓妍1, 范振杰1, 孙培杰1, 黄潇2, 任爱霞1, 孙敏1, 任永康1()   

  1. 1山西农业大学农学院,030801,山西晋中
    2山西省分析科学研究院,030006,山西太原
  • 收稿日期:2024-02-03 修回日期:2024-04-23 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 任永康
  • 作者简介:米东明,主要从事作物栽培研究,E-mail:mdm000301@163.com
  • 基金资助:
    国家小麦产业技术体系专项(CARS-03-01-24);国家自然科学基金面上项目(32272216);山西省基础研究计划项目(20210302123410);山西省科技创新团队(201605D131041);山西省重点实验室(201705D111007);山西省“1331工程”重点创新团队(SXYBKY201733)

Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat

Mi Dongming1(), Zhou Zuoyan1, Zhang Xiaoyan1, Fan Zhenjie1, Sun Peijie1, Huang Xiao2, Ren Aixia1, Sun Min1, Ren Yongkang1()   

  1. 1College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Shanxi Academy of Analytical Sciences, Taiyuan 030006, Shanxi, China
  • Received:2024-02-03 Revised:2024-04-23 Online:2025-04-15 Published:2025-04-16
  • Contact: Ren Yongkang

摘要: 为揭示不同黑小麦品种物质运转差异,明确最佳施氮量,于2019-2020年在山西晋中地区开展大田试验,研究0、180、240、300 kg/hm2 4个施氮量对冬黑1号和紫麦8555植株物质运转与籽粒蛋白质含量的影响。结果表明,冬黑1号在施氮240 kg/hm2和紫麦8555施氮180 kg/hm2时显著增加成熟期干物质量、花后干物质积累量及其对籽粒贡献率、花后氮素积累量及其对籽粒贡献率,提高氮素吸收利用能力。与其他施氮量相比,冬黑1号在施氮240 kg/hm2时显著提高了穗数和千粒重,增产12%~56%,产量达7691.76 kg/hm2;紫麦8555施氮180 kg/hm2时显著提高了千粒重,增产12%~50%,产量达7283.90 kg/hm2。冬黑1号施氮240 kg/hm2时显著提高了球蛋白、醇溶蛋白和谷蛋白含量,提高清蛋白含量,提高籽粒蛋白质含量4.0%~18.4%;紫麦8555施氮180 kg/hm2时显著提高了清蛋白、球蛋白和醇溶蛋白含量,提高谷蛋白含量,提高籽粒蛋白质含量3.3%~8.9%。本试验条件下冬黑1号施氮240 kg/hm2、紫麦8555施氮180 kg/hm2可实现产量与籽粒蛋白质含量的同步提升。

关键词: 黑小麦, 施氮量, 干物质运转, 氮素运转, 蛋白质含量

Abstract:

An experiment was carried out in Jinzhong, Shanxi in 2019-2020 to determine the ideal nitrogen application rate and to demonstrate the differences in the matter transfer of several black wheat varieties. The study examined the effects of four nitrogen application rates (0, 180, 240, and 300 kg/ha) on the plant matter transfer and grain protein contents of Donghei 1 (DH1) and Zimai 8555 (ZM8555). The results indicated that applying 240 kg/ha of nitrogen to DH1 and 180 kg/ha of nitrogen to ZM8555 significantly increased the dry matter amount at maturity, post-flowering dry matter accumulation, and its contribution to grain, post-flowering nitrogen accumulation and its contribution to grain, and enhanced the ability of nitrogen absorption and utilization. Compared to other nitrogen applications, the application of 240 kg/ha of nitrogen to DH1 resulted in a significant increase in the number of spikes and 1000-grain weight, as well as a yield increase of 12%-56%, reaching up to 7691.76 kg/ha. Similarly, applying 180 kg/ha of nitrogen to ZM8555 led to a significant increase in 1000-grain weight and a yield increase of 12%-50%, reaching up to 7283.90 kg/ha. Application of 240 kg/ha of nitrogen to DH1 resulted in a significant increase in globulin, gliadin, and glutelin contents. It also led to an increase in albumin content and protein content by 4.0%-18.4%. Similarly, applying 180 kg/ha of nitrogen to ZM8555 significantly increased the contents of albumin, globulin, and gliadin proteins, it also increased glutelin content, protein content was increased by 3.3%-8.9%. In the experiment, applying 240 kg/ha of nitrogen to DH1 and 180 kg/ha of nitrogen to ZM8555 resulted in a simultaneous improvement in both yield and grain protein contents.

Key words: Black wheat, Nitrogen application rate, Dry matter transfer, Nitrogen translocation, Protein content

图1

施氮量对黑小麦株高及各生育时期干物质积累量的影响 不同小写字母表示处理间差异显著(P < 0.05)。

表1

施氮量对黑小麦花前干物质转运与花后干物质积累的影响

品种
Variety
处理
Treatment
花前干物质Dry matter before flowering 花后干物质Dry matter after flowering
转运量
Transfer amount
(kg/hm2)
转运效率
Transfer efficiency
(%)
对籽粒贡献率
Contribution rate
to grain (%)
积累量
Accmulation amount
(kg/hm2)
对籽粒贡献率
Contribution rate
to grain (%)
DH1 N0 2356.38d 21.43a 49.90a 2466.47d 50.10c
N180 2533.65c 21.11a 40.22b 3765.05c 59.78b
N240 2804.59a 21.90a 36.46c 4887.17a 63.54a
N300 2708.23b 21.83a 39.35b 4174.75b 60.65b
ZM8555 N0 2399.95d 22.99ab 49.53a 2445.61d 50.47c
N180 2716.57c 21.59b 37.30c 4567.33a 62.70a
N240 2796.36b 23.72a 42.86b 3728.71c 57.14b
N300 2844.33a 23.34a 42.82b 3798.73b 57.18b

表2

施氮量对黑小麦氮素运转的影响

品种
Variety
处理
Treatment
花前氮素NTA 花后氮素NAA
积累量
Accmulation amount (kg/hm2)
对籽粒贡献率
Contribution rate to grain (%)
积累量
Accmulation amount (kg/hm2)
对籽粒贡献率
Contribution rate to grain (%)
DH1 N0 50.61c 45.69a 60.14d 54.31c
N180 63.07b 39.12b 98.14c 60.88b
N240 75.13a 36.68c 129.72a 63.32a
N300 63.95b 36.89c 109.41b 63.11a
ZM8555 N0 69.49c 57.50a 51.35d 42.50d
N180 58.34d 29.49d 139.48a 70.51a
N240 52.68b 31.09c 116.76b 68.91b
N300 65.64b 37.61b 108.91c 62.39c

表3

施氮量对黑小麦产量及其构成因素的影响

品种Variety 处理Treatment 穗数Spike number (×104/hm2) 穗粒数Grains per spike 千粒重1000-grain weight (g) 产量Yield (kg/hm2)
DH1 N0 396.83d 33.95a 30.94c 4922.85d
N180 458.94b 34.80a 34.19b 6298.70c
N240 507.38a 33.83a 36.69a 7691.76a
N300 445.51c 35.01a 35.04ab 6882.98b
ZM8555 N0 395.26d 33.01c 27.51c 4845.56d
N180 456.04c 34.41b 34.82a 7283.90a
N240 496.58a 33.83bc 33.71b 6525.07c
N300 472.31b 35.99a 33.62b 6643.06b

表4

施氮量对黑小麦氮素吸收利用的影响

品种
Variety
处理
Treatment
氮素利用效率
NUE (kg/kg)
氮素吸收效率
NUPE (kg/kg)
氮肥农学利用效率
NAE (kg/kg)
氮肥偏生产力
NPFP (kg/kg)
氮素收获指数
NHI
DH1 N0
N180 29.73a 1.19a 8.20b 34.99a 0.76a
N240 26.10b 1.23a 11.95a 32.05b 0.70ab
N300 25.41c 0.90b 6.87c 22.94c 0.64b
ZM8555 N0
N180 26.07b 1.55a 13.55a 40.47a 0.71b
N240 28.42a 0.96b 7.00b 27.19b 0.74a
N300 24.84c 0.89c 5.99c 22.14c 0.65c

表5

施氮量对黑小麦籽粒蛋白质及其组分含量的影响

品种Variety 处理Treatment 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Gliadin 谷蛋白Glutelin 蛋白质含量Protein content
DH1 N0 1.41b 1.29c 5.68c 3.38c 12.82b
N180 2.37a 1.54b 5.87b 3.93b 14.59ab
N240 2.47a 1.70a 6.21a 4.06a 15.18a
N300 2.44a 1.55b 5.91b 3.90b 14.36ab
ZM8555 N0 1.14d 1.12c 6.20c 4.38b 14.22b
N180 1.99a 1.42a 6.53a 4.76a 15.48a
N240 1.82c 1.24bc 6.36b 4.70a 14.80ab
N300 1.91b 1.27b 6.36b 4.71a 14.98a
[1] 董飞, 闫秋艳, 张敏敏, 等. 追氮量对不同粒色小麦籽粒产量、品质及硒吸收的影响. 中国农业大学学报, 2022, 27(8):13-23.
[2] Jaśkiewicz B. Effect of tillage system and nitrogen fertilization on the yield of selected spring triticale varieties. Polish Journal of Agronomy, 2021,46:9-13.
[3] Barati V, Bijanzadeh E, Emam Y, et al. Nitrogen nutrition effects on triticale photosynthesis and assimilate translocation under late-season water stress conditions. Journal of Plant Nutrition, 2022, 45(3):439-456.
[4] Estrada-Campuzano G, Slafer G A, Miralles D J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Research, 2012,128:167-179.
[5] Kong W, Huo R, Lu Y, et al. Nitrogen application can optimize form of selenium in soil in selenium-rich areas to affect selenium absorption and accumulation in triticale. Plants, 2023, 12(24):4160.
[6] 黄鑫, 李耀光, 孙婉, 等. 不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥的响应. 作物学报, 2018, 44(10):1506-1516.
[7] Zhang G X, Liu S J, Dong Y J, et al. A nitrogen fertilizer strategy for simultaneously increasing wheat grain yield and protein content: mixed application of controlled-release urea and normal urea. Field Crops Research, 2022,277:108405.
[8] Zhang M W, Ma D Y, Ma G, et al. Responses of glutamine synthetase activity and gene expression to nitrogen levels in winter wheat cultivars with different grain protein content. Journal of Cereal Science, 2017,74:187-193.
[9] Barati V, Bijanzadeh E, Zinati Z. Nitrogen source and deficit irrigation influence on yield and nitrogen translocation of triticale in an arid mediterranean agroecosystem. Journal of Agricultural Science and Technology, 2020, 22(5):1295-1311.
[10] Yusuf N B, Fagam A S, Auwalu B, et al. Effect of irrigation schedules, nitrogen rates and weeding regimes on harvest index, water use efficiency and protein content of triticale (Triticale triticosecale Wittmack). ATBU Journal of Science,Technology and Education, 2023, 11(3):175-185.
[11] Oral E. Effect of nitrogen fertilization levels on grain yield and yield components in triticale based on AMMI and GGE biplot analysis. Applied Ecology & Environmental Research, 2018, 16(4):4865-4878.
[12] 吕冰, 范仲卿, 常旭虹, 等. 施氮量对2个粒色小麦产量及加工品质的影响. 核农学报, 2017, 31(6):1192-1199.
[13] 裴自友, 温辉芹, 张立生, 等. 富硒黑粒小麦品种冬黑1号的研究. 种子, 2013, 32(7):74-76.
[14] 张文云, 王敏, 马小飞. 彩色旱地小麦新品种紫麦8555的特征特性及栽培技术. 农业科技通讯, 2021(8):267-269.
[15] Bremner P M, Rawson H M. The weights of individual grains of the wheat ear in relation to their growth potential, the supply of assimilate and interaction between grains. Functional Plant Biology, 1978, 5(1):61-72.
[16] 薛丽华, 胡锐, 赛力汗, 等. 滴灌量对冬小麦耗水特性和干物质积累分配的影响. 麦类作物学报, 2013, 33(1):78-83.
[17] 高春华, 于振文, 石玉, 等. 测墒补灌条件下高产小麦品种水分利用特性及干物质积累和分配. 作物学报, 2013, 39(12):2211-2219.
[18] Przuli N, Momcilovic V. Dry matter and nitrogen accu-mulation and use in spring barley. Plant,Soil and Environment, 2003,49:36-47.
[19] Guo Z J, Zhang Y L, Zhao J Y, et al. Nitrogen use by winter wheat and changes in soil nitrate nitrogen levels with supplemental irrigation based on measurement of moisture content in various soil layers. Field Crops Research, 2014,164:117-125.
[20] Spyridon D K, Sideris F, Christos A D. Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in a mediterranean area. Field Crops Research, 2012,127:1-8.
[21] Wang H D, Wu L F, Cheng M H, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip- fertigated cotton in northern Xinjiang, China. Field Crops Research, 2018,219:169-179.
[22] Wang H Y, Zhang Y T, Chen A Q, et al. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Research, 2017,207:52-61.
[23] Graham R D, Graham P E, Geytenbeek B C, et al. Responses of triticale, wheat, rye and barley to nitrogen fertilizer. Australian Journal of Experimental Agriculture and Animal Husbandry, 1983,28:78-79.
[24] Katarzyna W, Arkadiusz S, Małgorzata W, et al. Effect of nitrogen fertilization method on the yield and quality of milewo variety spring triticale grain. Polish Journal of Natural Sciences, 2015, 30(2):173-184.
[25] Cimrin K, Bozkurt M, Sekeroglu N. Effect of nitrogen fertilization on protein yield and nutrient uptake in some triticale genotypes. Journal of Agronomy, 2004, 3(4):268-272.
[26] Mut Z, Sezer I, Gulumser A H. Effect of different sowing rates and nitrogen levels on grain yield, yield components and some quality traits of triticale. Asian Journal of Plant Sciences, 2005, 4(5):533-539.
[27] Noor H, Wang Q, Islam M A, et al. Effects of sowing methods and nitrogen rates on photosynthetic characteristics, yield and quality of winter wheat. Photosynthetica, 2021, 59(2):277-285.
[1] 朱子健, 陈娜娜, 吴月莹, 穰中文, 戴林建, 田明慧, 田峰, 易镇邪. 施氮量、种植密度和留叶数对湘西烟区湘烟7号产量和质量的影响[J]. 作物杂志, 2025, (1): 179–186
[2] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[3] 何嘉辉, 李艳锋, 严天泽, 张选文, 秦鹏, 郭进有, 王凯, 刘雄伦, 杨远柱. 氮肥减施对超级稻玮两优8612产量及品质的影响[J]. 作物杂志, 2024, (5): 73–79
[4] 郝小聪, 李欣宇, 侯起岭, 杨吉芳, 安春会, 王长华, 叶志杰, 张风廷. 施氮量对二系杂交小麦品质的影响[J]. 作物杂志, 2024, (1): 187–192
[5] 刘宇, 曹家林, 肖正午, 张鸣宇, 陈佳娜, 曹放波, 黄敏. 施氮量对超级杂交稻Y两优900产量与氮肥利用率的影响[J]. 作物杂志, 2023, (2): 126–130
[6] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163–169
[7] 吴子帅, 刘广林, 李虎, 罗群昌, 陈传华, 朱其南. 施氮量对优质常规籼稻稻米品质的影响[J]. 作物杂志, 2023, (1): 84–88
[8] 张玺, 谢晋, 黄浩, 高仁吉, 鲁超, 周意霖, 梁增发, 王维. 普洱烟区氮肥运筹及株距对烤烟品种云烟116产量和质量的影响[J]. 作物杂志, 2022, (5): 188–194
[9] 郑敏娜, 梁秀芝, 康佳惠, 李荫藩, 王慧, 韩志顺, 陈燕妮. 不同施氮量对饲用燕麦光合特性及氮素光合利用效率的影响[J]. 作物杂志, 2022, (4): 249–254
[10] 李丰, 高桐梅, 苏小雨, 魏利斌, 王东勇, 田媛, 李同科, 杨自豪, 卫双玲. 施氮量和种植密度对芝麻光合速率、产量和氮肥利用率的影响[J]. 作物杂志, 2022, (2): 215–221
[11] 陆丹丹, 叶苗, 张祖建. 稻米蛋白质及其组分研究概况及其对稻米品质的影响[J]. 作物杂志, 2022, (2): 28–34
[12] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[13] 王庆彬, 卢洁春, 彭春娥, 孟慧, 刘治国, 王洪凤, 张民. 不同氮量处理配施宛氏拟青霉提取物对小白菜生长和氮素吸收的影响[J]. 作物杂志, 2022, (1): 190–195
[14] 李润卿, 申勇, 朱宽宇, 王志琴, 杨建昌. 施氮量对超级稻南粳9108产量、淀粉RVA谱特征值和理化特性的影响[J]. 作物杂志, 2022, (1): 205–212
[15] 高甜甜, 王德梅, 王艳杰, 杨玉双, 常旭虹, 赵广才. 不同春小麦品种对氮肥处理的响应[J]. 作物杂志, 2021, (6): 67–71
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!