作物杂志,2025, 第2期: 74–78 doi: 10.16035/j.issn.1001-7283.2025.02.010

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

基于SNP芯片对96份糯玉米自交系遗传多样性分析

李文跃1(), 于滔1, 曹士亮1, 马雪娜1, 唐贵2, 高利3, 杨耿斌1()   

  1. 1黑龙江省农业科学院玉米研究所/农业农村部东北北部玉米生物学与遗传重点实验室,150000,黑龙江哈尔滨
    2黑龙江省农业科学院乡村振兴研究所,150000,黑龙江哈尔滨
    3黑龙江省农业科学院绥化分院,152000,黑龙江绥化
  • 收稿日期:2024-01-30 修回日期:2024-03-30 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 杨耿斌
  • 作者简介:李文跃,主要从事玉米分子育种工作,E-mail:569990044@qq.com
  • 基金资助:
    黑龙江省农业科学院院级科研项目(2020FJZX042);黑龙江省省属科研院所科研业务费(CZKYF2023-1-A003);黑龙江省农业科技创新跨越工程(CX23TS02);黑龙江省农业科技创新跨越工程(CX23ZD05);博士后研究人员落户黑龙江科研启动资金

Genetic Diversity Analysis of 96 Waxy Maize Inbred Lines Based on SNP Chip

Li Wenyue1(), Yu Tao1, Cao Shiliang1, Ma Xuena1, Tang Gui2, Gao Li3, Yang Gengbin1()   

  1. 1Maize Research Institute, Heilongjiang Academy of Agricultural Sciences / Key Laboratory of Maize Biology and Genetics in the Northern Part of Northeast China, Ministry of Agriculture and Rural Affairs, Harbin 150000, Heilongjiang, China
    2Rural Revitalization Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    3Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua 152000, Heilongjiang, China
  • Received:2024-01-30 Revised:2024-03-30 Online:2025-04-15 Published:2025-04-16
  • Contact: Yang Gengbin

摘要: 近年来,糯玉米(Zea mays L. var. certaina Kulesh)因其独特的口感而广受欢迎,成为备受人们喜爱的农产品。然而,在糯玉米自交系方面,目前并没有明确的类群划分。为了提高东北地区鲜食糯玉米育种的效率,利用Maize 6H-60K基因芯片对来自东北地区的96份糯玉米自交系进行基因型分析。结果表明,在96份自交系中,14 312个SNP标记检测到基因多样性为0.098~0.500,平均值0.387;最小等位基因频率(MAF)为0~0.5,平均值0.380;多态性信息量(PIC)为0.094~0.375,平均值0.306。96份材料最终划分为3个类群,A类群为垦粘1母本血缘群,B类群为先糯父本血缘群,C类群为垦粘1父本血缘群。

关键词: 糯玉米, SNP, 类群划分, 遗传分析

Abstract:

In recent years, waxy maize has been popular due to its unique texture and has become a favoured agricultural product widespread popularity. However, for waxy maize inbred lines, currently no clear classification has been reported. In order to improve the efficiency of fresh glutinous corn breeding in the Northeast of China, this study utilized the Maize 6H-60K gene chip to conduct genotype analysis on 96 waxy corn inbred lines from the Northeast of China. The results showed that among the 96 inbred lines, the gene diversity detected by 14 312 SNP markers ranged from 0.098 to 0.500, with an average of 0.387. The minimum allele frequency ranged from 0 to 0.5, with an average of 0.380, and the polymorphic information content ranged from 0.094 to 0.375, with an average of 0.306. The 96 materials were ultimately classified into three clusters, group A was the Kennian 1 maternal group, group B was the Xiannuo paternal group, and group C was the Kennian 1 paternal group.

Key words: Waxy maize, SNP, Group division, Genetic analysis

图1

96份糯玉米遗传距离分布比例

图2

最小等位基因频率柱状图

表1

基因型总结

项目Item 数值Numeric
样品数量Sample number 96
标记数量Number of markers 38 693
杂合比例Heterozygous ratio 0.034
最小等位基因频率Minimum allele frequency 0.380
基因多样性Gene diversity 0.387
PIC 0.306

图3

ΔK变化曲线

图4

96份糯玉米自交系主成分分析

图5

96份糯玉米自交系聚类分析

图6

96份糯玉米自交系群体遗传结构分析

[1] 杨明花, 嵇闯, 崔亚坤, 等. 鲜食糯玉米货架期苞叶相关性状的配合力及其遗传效应分析. 玉米科学, 2023, 31(6):10-16.
[2] 马佳, 马莹, 王丽媛, 等. 上海鲜食玉米产业发展现状与对策研究. 上海农业学报, 2023, 39(5):149-156.
[3] 鲍坚东. 中国糯玉米起源与育种选择分子机制. 杭州:浙江大学, 2011.
[4] 邢政. 东北地区主要糯玉米自交系聚类分析及杂种优势的利用. 长春:吉林农业大学, 2017.
[5] 程宇坤. 山西省糯玉米自交系的遗传多样性分析及类群划分. 太原:山西大学, 2012.
[6] Reif J C, Melchinger A E, Xia X C, et al. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science, 2003, 43(4):1275-1282.
[7] Akaogu I C, Badu-Apraku B, Adetimirin V O, et al. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments. Journal of Agricultural Science, 2013, 151(4):519-537.
[8] Ilyas M Z, Park H, Jang S J, et al. Association mapping for evaluation of population structure, genetic diversity, and physiochemical traits in drought-stressed maize germplasm using SSR markers. Plants (Basel), 2023, 12(24):4092.
[9] Gao C S, Xin P F, Cheng C H, et al. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers. PLoS ONE, 2014, 9 (10):e110638.
[10] 李松, 施德林, 董云武, 等. 基于SSR标记的云南35个玉米自交系遗传多样性分析. 云南农业大学学报(自然科学), 2023, 38(5):732-738.
[11] Ryu J, Lyu J I, Kim D G, et al. Single nucleotide polymorphism (SNP) discovery and association study of flowering times, crude fat and fatty acid composition in rapeseed (Brassica napus L.) mutant lines using genotyping-by-sequencing (GBS). Agronomy, 2021, 11(3):508-521.
[12] 吴金凤, 宋伟, 王蕊, 等. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5):29-34.
[13] 卢柏山. 糯玉米骨干自交系的表型及SSR分类研究. 北京: 中国农业科学院, 2009.
[14] 范競升, 谢和霞, 谢小东, 等. 基于SNP标记揭示广西糯玉米地方品种的遗传多样性与群体遗传结构. 植物遗传资源学报, 2023, 24(3):661-670.
[15] Tian H L, Yang Y, Yi H M, et al. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. The Plant Journal, 2021, 105(4):1113-1122.
[16] 王綦. 鲜食糯玉米食用品质评价及影响机制研究. 无锡:江南大学, 2022.
[17] 甘娜. 应用RAPD标记和细胞质基因组PCR-RFLP技术研究大花蕙兰的遗传多样性. 成都:四川农业大学, 2005.
[18] Amom T, Tikendra L, Apana N, et al. Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry, 2020, 174(5):312-330.
[19] Lin C J, Zhang C B, Zhao H K, et al. Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Plant Science, 2014, 229(3):208-214.
[20] Han Y P, Chagné D, Gasic K, et al. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93(3):282-288.
[21] 韩晴, 卢媛, 王义发, 等. 50个鲜食糯玉米农艺性状和SSR标记遗传多样性分析. 上海农业学报, 2016, 32(5):11-15.
[22] 杨亚桐, 董安忆, 刘松涛, 等. 基于SSR分子标记的糯玉米遗传多样性研究. 江苏农业科学, 2020, 48(2):83-86.
[23] 吴金凤. 利用SSR和SNP标记研究玉米自交系的遗传多样性. 长春:吉林农业大学, 2014.
[24] 高嵩, 刘宏伟, 何欢, 等. 利用SNP芯片进行玉米遗传多样性和群体遗传结构分析及新品种选育. 玉米科学, 2021, 29 (1):39-45.
[25] Govindaraj M, Vetriventhan M, Srinivasan M, et al. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015, 41(4):1-14.
[26] 赵久然, 李春辉, 宋伟, 等. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51(4):626-644.
[27] 张鹏, 管俊娇, 黄清梅, 等. 基于SNP芯片的云南玉米自交系遗传多样性和群体遗传结构分析. 南方农业学报, 2020, 51(9):2082-2089.
[1] 孙艳杰, 魏国才, 吴雨恒, 石运强, 邵勇, 刘英蕊, 南元涛, 张维耀. 利用SNP标记对100份玉米种质资源的遗传多样性分析[J]. 作物杂志, 2025, (2): 14–19
[2] 卢柏山, 董会, 刘辉, 徐丽, 樊艳丽, 史亚兴, 赵久然. 鲜食糯玉米籽粒含糖量与品尝相关性分析[J]. 作物杂志, 2024, (5): 80–85
[3] 谢文锦, 李方明, 李宁, 杨海龙, 付俊, 张中伟, 高旭东, 丰光. 基于GGE双标图的北方地区鲜食糯玉米产量和品质性状及试点鉴别力分析[J]. 作物杂志, 2023, (4): 85–90
[4] 胡丹. 甜荞茎秆重心高度和抗折力的遗传分析[J]. 作物杂志, 2022, (4): 83–89
[5] 亓晓蕾, 李兴锋, 吕广德, 王瑞霞, 王君, 孙宪印, 孙盈盈, 陈永军, 钱兆国, 吴科. 基于SNP分子标记的泰山/泰科麦系列小麦遗传解析[J]. 作物杂志, 2021, (5): 64–71
[6] 宿洋, 杨静, 郭勇, 杜维俊, 邱丽娟. 大豆百粒重相关基因的全基因组发掘分析[J]. 作物杂志, 2021, (3): 8–18
[7] 曾艳华, 谢和霞, 江禹奉, 周锦国, 谢小东, 周海宇, 谭贤杰, 覃兰秋, 程伟东. 基于SNP标记的爆裂玉米农家品种遗传多样性[J]. 作物杂志, 2020, (5): 65–70
[8] 李忠南, 王越人, 张艳辉, 邬生辉, 曲海涛, 许正学, 李光发. 玉米DH系15D969超多穗行数的遗传分析[J]. 作物杂志, 2020, (5): 88–92
[9] 周伟,崔福柱,段宏凯,郝国花,杨慧,刘芮芮. 播期对糯玉米籽粒产量及品质的影响[J]. 作物杂志, 2020, (2): 156–161
[10] 张晓玉,张亚玲,靳学慧,闫天雨,赵泽. 稻瘟病菌杂交后代致病性遗传分析[J]. 作物杂志, 2020, (2): 182–187
[11] 史亚兴,董会,卢柏山,赵久然,樊艳丽,徐丽,俞嫒年. 糯玉米不同采收期子粒降水及糊化特性研究[J]. 作物杂志, 2019, (3): 112–117
[12] 蔡东芳,张书芬,王建平,曹金华,文雁成,张书法,何俊平,赵磊,王东国,朱家成. 利用SNP芯片解析油菜杂交种丰油10号的遗传基础[J]. 作物杂志, 2019, (3): 80–85
[13] 史亚兴,徐丽,赵久然,卢柏山,樊艳丽. 中国糯玉米产业优势及在“一带一路”发展中的机遇[J]. 作物杂志, 2019, (2): 15–19
[14] 史娜溶,李静静,吴慧玉,孙道杰,冯毅,王辉,刘新伦,张玲丽. 西农979中长穗偃麦草(Thinopyrum ponticum)的遗传成分分析[J]. 作物杂志, 2019, (1): 15–21
[15] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79–83
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!