作物杂志,2025, 第2期: 6673 doi: 10.16035/j.issn.1001-7283.2025.02.009
Chen Hu(), Gao Yuan, Sun Jiameng, Yu Peng, Xiao Hongwu, Zhang Haitao(
)
摘要:
在栽培大麦MOREX全基因组水平下,利用TBtools、ExPASy、BUSCA、MEME、PlantCARE等在线工具对其染色体定位、理化性质、基因结构、保守结构域和启动子进行了预测分析。利用已发表的RNA-seq数据分析了典型TRX基因家族成员在大麦不同时期、不同组织部位的表达模式及其在干旱胁迫下的表达谱。结果表明,大麦典型TRX基因家族有15个成员,不均匀地分布在6条染色体上(除6H染色体)。启动子顺式作用元件预测到大麦典型TRX基因家族在生长发育、激素调控、非生物胁迫方面均发挥功能。15个典型TRX基因在种子、根、茎、叶和花等不同组织和不同时期均有表达。
[1] | Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. Journal of Integrative Plant Biology, 2019, 61(3):204-225. |
[2] | Geng L, Li M D, Zhang G D, et al. Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety, 2022, 6(2):142-154. |
[3] | Sakellariou M, Mylona P V. New uses for traditional crops: the case of barley biofortification. Agronomy, 2020, 10(12):1964. |
[4] | Lemaire S D, Miginiac-Maslow M. The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynthesis Research, 2004,82:203-220. |
[5] | Arnér E S J, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 2000, 267(20):6102-6109. |
[6] | Liu J, Liu B, Feng D R, et al. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiology, 2013, 163(4):1710-1728. |
[7] | Zhou J F, Song T Q, Zhou H W, et al. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022,13:1020584. |
[8] | Jacquot J P, Vidal J, Gadal P, et al. Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Letters, 1978, 96(2):243-246. |
[9] | Wolosiuk R A, Buchanan B B. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature, 1977, 266(5602):565-567. |
[10] | Okegawa Y, Motohashi K. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. The Plant Journal, 2015, 84(5):900-913. |
[11] | Barajas-López J D, Serrato A J, Cazalis R, et al. Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA 1 transcription factor. Journal of Experimental Botany, 2011, 62(6):2039-2051. |
[12] | Buchanan B B. The path to thioredoxin and redox regulation in chloroplasts. Annual Review of Plant Biology, 2016,67:1-24. |
[13] | Gelhaye E, Rouhier N, Gérard J, et al. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40):14545-14550. |
[14] | Laloi C, Rayapuram N, Chartier Y, et al. Identification and characterization of a mitochondrial thioredoxin system in plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24):14144-14149. |
[15] | Collin V, Issakidis-Bourguet E, Marchand C, et al. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. Journal of Biological Chemistry, 2003, 278(26):23747-23752. |
[16] | Collin V, Lamkemeyer P, Miginiac-Maslow M, et al. Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiology, 2004, 136(4):4088-4095. |
[17] | Arsova B, Hoja U, Wimmelbacher M, et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol- dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. The Plant Cell, 2010, 22(5):1498-1515. |
[18] | Geigenberger P, Thormählen I, Daloso D M, et al. The unprecedented versatility of the plant thioredoxin system. Trends in Plant Science, 2017, 22(3):249-262. |
[19] | Nikkanen L, Rintamäki E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal, 2019, 476(7):1159-1172. |
[20] | Laughner B J, Sehnke P C, Ferl R J. A novel nuclear member of the thioredoxin superfamily. Plant Physiology, 1998, 118(3):987-996. |
[21] | Funato Y, Hayashi T, Irino Y, et al. Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1. Biochemical and Biophysical Research Communications, 2013, 440(4):737-742. |
[22] | Chen C J, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202. |
[23] | Sun L J, Ren H Y, Liu R X, et al. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Molecular Plant-Microbe Interactions, 2010, 23(11):1470-1485. |
[24] | Havelda Z, Várallyay É, Válóczi A, et al. Plant virus infection‐induced persistent host gene downregulation in systemically infected leaves. The Plant Journal, 2008, 55(2):278-288. |
[25] | Valerio C, Costa A, Marri L, et al.Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. Journal of Experimental Botany, 2011, 62(2):545-555. |
[26] | Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1):358-363. |
[27] | Xie G, Kato H, Sasaki K, et al. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Letters, 2009, 583(17):2734-2738. |
[28] | Zhang S X, Yu Y, Song T Q, et al. Genome-wide identification of foxtail millet’s TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis. Frontiers in Plant Science, 2022,13:946037. |
[29] | Nuruzzaman M, Sharoni A M, Satoh K, et al. The thioredoxin gene family in rice: Genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochemical and Biophysical Research Communications, 2012, 423(2):417-423. |
[30] | Elasad M, Wei H L, Wang H T, et al. Genome-wide analysis and characterization of the TRX gene family in upland cotton. Tropical Plant Biology, 2018, 11(3/4):119-130. |
[31] | Zhang J R, Zhao T, Yan F D, et al. Genome-wide identification and expression analysis of Thioredoxin (Trx) genes in seed development of vitis vinifera. Journal of Plant Growth Regulation, 2022, 41(7):3030-3045. |
[32] | Li X, Su G J, Ntambiyukuri A, et al. Genome-wide identification and expression analysis of the AhTrx family genes in peanut. Biologia Plantarum, 2022, 66(1):112-122. |
[33] | Bhurta R, Hurali D T, Tyagi S, et al. Genome-wide identification and expression analysis of the thioredoxin (trx) gene family reveals its role in leaf rust resistance in wheat (Triticum aestivum L.). Frontiers in Genetics, 2022,13:563. |
[34] | Hägglund P, Björnberg O, Navrot N, et al. The barley grain thioredoxin system-an update. Frontiers in Plant Science, 2013,4:151. |
[1] | 张俊, 蔡苏云, 徐子豪, 侯蕾, 贺润丽, 尹桂芳, 王莉花, 王艳青, 卢文洁, 孙道旺. 苦荞FtERF基因克隆、生物信息学及其表达分析[J]. 作物杂志, 2024, (2): 2329 |
[2] | 张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析[J]. 作物杂志, 2024, (2): 3039 |
[3] | 张玉, 杨文静, 刘璇, 聂峰杰, 张丽, 石磊, 张国辉, 郭志乾, 巩檑. 马铃薯细胞壁蔗糖转化酶基因StCWIN1启动子克隆与表达及其在干旱胁迫下的作用分析[J]. 作物杂志, 2024, (2): 5461 |
[4] | 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 6572 |
[5] | 毋莹, 胡蝶, 李婷, 段乾元, 韦宁宁, 张兴华, 徐淑兔, 薛吉全. 玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志, 2024, (1): 8089 |
[6] | 夏雪, 蔡康锋, 刘磊, 宋秀娟, 汪军妹, 岳文浩. 大麦根形态和分子水平对低磷胁迫响应研究进展[J]. 作物杂志, 2023, (6): 1116 |
[7] | 赵锋, 包奇军, 潘永东, 柳小宁, 张华瑜, 牛小霞. 70份大麦种质资源遗传多样性评价[J]. 作物杂志, 2023, (6): 5461 |
[8] | 郜战宁, 杨永乾, 王树杰, 冯辉, 薛正刚. 143份大麦种质资源的综合评价[J]. 作物杂志, 2023, (5): 5965 |
[9] | 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 7784 |
[10] | 卢映吉, 杨晓梦, 普晓英, 李霞, 杨丽娥, 杨砚斌, 曾亚文. 不同季节播种和割苗对大麦优良品种农艺性状的影响[J]. 作物杂志, 2023, (3): 215220 |
[11] | 邱凯华, 方淑梅, 梁喜龙. 稻瘟病菌类SRRM1转录因子的功能分析[J]. 作物杂志, 2023, (3): 246253 |
[12] | 孟亚轩, 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 主要禾谷类作物DGAT基因家族比较分析[J]. 作物杂志, 2023, (1): 2029 |
[13] | 赵斌, 季昌好, 孙皓, 朱斌, 王瑞, 陈晓东. 多棱饲用大麦品系粮、草产量及品质的鉴定与综合评价[J]. 作物杂志, 2022, (6): 9397 |
[14] | 周菲. 向日葵HaLACS7基因的生物信息学和表达分析[J]. 作物杂志, 2022, (3): 104108 |
[15] | 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 7379 |
|