作物杂志,2025, 第2期: 66–73 doi: 10.16035/j.issn.1001-7283.2025.02.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

大麦典型硫氧还蛋白(TRX)基因家族鉴定与生物信息学分析

陈虎(), 高原, 孙家猛, 俞鹏, 肖洪武, 张海涛()   

  1. 安徽农业大学农学院,230036,安徽合肥
  • 收稿日期:2024-01-15 修回日期:2024-03-19 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 张海涛
  • 作者简介:陈虎,研究方向为作物遗传育种,E-mail:2032242097@qq.com
  • 基金资助:
    “十四五”国家重点研发计划(2022YFF1002903);国家自然科学基金(31871603)

Identification and Bioinformatics Analysis of the Typical Thioredoxin (TRX) Gene Family in Barley

Chen Hu(), Gao Yuan, Sun Jiameng, Yu Peng, Xiao Hongwu, Zhang Haitao()   

  1. College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2024-01-15 Revised:2024-03-19 Online:2025-04-15 Published:2025-04-16
  • Contact: Zhang Haitao

摘要:

在栽培大麦MOREX全基因组水平下,利用TBtools、ExPASy、BUSCA、MEME、PlantCARE等在线工具对其染色体定位、理化性质、基因结构、保守结构域和启动子进行了预测分析。利用已发表的RNA-seq数据分析了典型TRX基因家族成员在大麦不同时期、不同组织部位的表达模式及其在干旱胁迫下的表达谱。结果表明,大麦典型TRX基因家族有15个成员,不均匀地分布在6条染色体上(除6H染色体)。启动子顺式作用元件预测到大麦典型TRX基因家族在生长发育、激素调控、非生物胁迫方面均发挥功能。15个典型TRX基因在种子、根、茎、叶和花等不同组织和不同时期均有表达。

关键词: 大麦, TRX基因家族, 系统进化, 表达分析, 生物信息学

Abstract:

The chromosome location, physical and chemical properties, gene structure, conserved domain and promoter were predicted and analyzed by online tools such as TBtools, ExPASy, BUSCA, MEME and PlantCARE at the genome-wide level of cultivated barley MOREX. Using the published RNA-seq data, the expression patterns of typical TRX gene family members in different periods and different tissues of barley and their expression profiles under drought stress were analyzed. The results showed that there were 15 members in the typical TRX gene family of barley, which were unevenly distributed on six chromosomes (except 6H chromosome). Promoter cis-acting elements predicted that the typical TRX gene family of barley played a role in growth and development, hormonal regulation, and abiotic stress. The 15 typical TRX genes were expressed in different tissues such as seeds, roots, stems, leaves and flowers, and at different periods.

Key words: Barley (Hordeum vulgare L.), TRX gene family, System evolution, Expression analysis, Bioinformatics

图1

大麦典型TRX基因在染色体上的位置

表1

大麦典型HvTRX基因的基本信息

基因名称
Gene name
基因ID
Gene ID
位置
Position
氨基酸数
Number of
amino acids
理论等电点
Theoretical
pI
分子质量
Molecular
weight
总平均亲水性
Grand average
hydropathicity
亚细胞定位
Subcellular
localization
HvTRX1 HORVU.MOREX.r3.1HG0026030 1H 131 5.15 14.48 -0.270 细胞质
HvTRX2 HORVU.MOREX.r3.1HG0070830 1H 143 4.54 15.98 -0.331 细胞核
HvTRX3 HORVU.MOREX.r3.1HG0076510 1H 122 5.12 13.17 0.319 细胞核
HvTRX4 HORVU.MOREX.r3.2HG0149410 2H 118 5.09 12.75 0.089 细胞质
HvTRX5 HORVU.MOREX.r3.2HG0168580 2H 184 8.89 20.26 -0.224 线粒体
HvTRX6 HORVU.MOREX.r3.2HG0183850 2H 240 9.56 25.72 -0.343 叶绿体
HvTRX7 HORVU.MOREX.r3.2HG0194850 2H 577 4.78 63.54 -0.228 细胞质
HvTRX8 HORVU.MOREX.r3.2HG0210290 2H 172 6.74 18.71 -0.058 叶绿体
HvTRX9 HORVU.MOREX.r3.3HG0325100 3H 162 8.40 17.86 -0.200 叶绿体
HvTRX10 HORVU.MOREX.r3.4HG0341820 4H 186 6.32 20.62 -0.308 叶绿体
HvTRX11 HORVU.MOREX.r3.5HG0451950 5H 175 8.52 19.28 0.031 线粒体
HvTRX12 HORVU.MOREX.r3.5HG0479110 5H 319 5.93 35.58 -0.504 细胞核
HvTRX13 HORVU.MOREX.r3.5HG0520730 5H 131 5.89 14.47 -0.065 细胞核
HvTRX14 HORVU.MOREX.r3.7HG0738080 7H 176 9.48 19.35 -0.199 线粒体
HvTRX15 HORVU.MOREX.r3.7HG0749460 7H 173 8.55 18.44 -0.106 叶绿体

图2

大麦典型HvTRX基因家族的系统发育关系(a)、保守基序(b)和基因结构(c) (a) 不同字母代表典型HvTRX的7个亚型。(b) 不同颜色代表10个不同保守基序。(c) 黄色和绿色矩形分别表示编码序列(CDS)和非编码序列(UTR),黑线表示内含子。每个典型HvTRX基因的CDS、UTR和内含子按比例显示长度。

图3

大麦典型HvTRX基因的启动子顺式作用元件分析

图4

使用最大似然法的典型TRX蛋白的系统发育树 、和分别表示大麦、水稻和拟南芥的蛋白质。

图5

大麦、水稻和拟南芥之间典型TRX基因的共线性 灰色线表示大麦和其他作物基因组中的所有共线性块,重复的TRX基因对用黑线突出显示。数字表示上述3种作物基因组的染色体数量。

图6

大麦典型TRX基因在不同组织中的表达模式

图7

干旱胁迫下大麦典型HvTRX基因在叶片(a)和根部(b)的表达热图 CK1和D1:耐旱材料的对照与干旱处理;CK2和D2:干旱敏感材料的对照与干旱处理;CK:对照;WD:缺水处理。

[1] Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. Journal of Integrative Plant Biology, 2019, 61(3):204-225.
[2] Geng L, Li M D, Zhang G D, et al. Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety, 2022, 6(2):142-154.
[3] Sakellariou M, Mylona P V. New uses for traditional crops: the case of barley biofortification. Agronomy, 2020, 10(12):1964.
[4] Lemaire S D, Miginiac-Maslow M. The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynthesis Research, 2004,82:203-220.
[5] Arnér E S J, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 2000, 267(20):6102-6109.
[6] Liu J, Liu B, Feng D R, et al. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiology, 2013, 163(4):1710-1728.
[7] Zhou J F, Song T Q, Zhou H W, et al. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022,13:1020584.
[8] Jacquot J P, Vidal J, Gadal P, et al. Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Letters, 1978, 96(2):243-246.
[9] Wolosiuk R A, Buchanan B B. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature, 1977, 266(5602):565-567.
[10] Okegawa Y, Motohashi K. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. The Plant Journal, 2015, 84(5):900-913.
[11] Barajas-López J D, Serrato A J, Cazalis R, et al. Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA 1 transcription factor. Journal of Experimental Botany, 2011, 62(6):2039-2051.
[12] Buchanan B B. The path to thioredoxin and redox regulation in chloroplasts. Annual Review of Plant Biology, 2016,67:1-24.
[13] Gelhaye E, Rouhier N, Gérard J, et al. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40):14545-14550.
[14] Laloi C, Rayapuram N, Chartier Y, et al. Identification and characterization of a mitochondrial thioredoxin system in plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24):14144-14149.
[15] Collin V, Issakidis-Bourguet E, Marchand C, et al. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. Journal of Biological Chemistry, 2003, 278(26):23747-23752.
[16] Collin V, Lamkemeyer P, Miginiac-Maslow M, et al. Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiology, 2004, 136(4):4088-4095.
[17] Arsova B, Hoja U, Wimmelbacher M, et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol- dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. The Plant Cell, 2010, 22(5):1498-1515.
[18] Geigenberger P, Thormählen I, Daloso D M, et al. The unprecedented versatility of the plant‎ thioredoxin system. Trends in Plant Science, 2017, 22(3):249-262.
[19] Nikkanen L, Rintamäki E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal, 2019, 476(7):1159-1172.
[20] Laughner B J, Sehnke P C, Ferl R J. A novel nuclear member of the thioredoxin superfamily. Plant Physiology, 1998, 118(3):987-996.
[21] Funato Y, Hayashi T, Irino Y, et al. Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1. Biochemical and Biophysical Research Communications, 2013, 440(4):737-742.
[22] Chen C J, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
[23] Sun L J, Ren H Y, Liu R X, et al. An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Molecular Plant-Microbe Interactions, 2010, 23(11):1470-1485.
[24] Havelda Z, Várallyay É, Válóczi A, et al. Plant virus infection‐induced persistent host gene downregulation in systemically infected leaves. The Plant Journal, 2008, 55(2):278-288.
[25] Valerio C, Costa A, Marri L, et al.Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. Journal of Experimental Botany, 2011, 62(2):545-555.
[26] Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1):358-363.
[27] Xie G, Kato H, Sasaki K, et al. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Letters, 2009, 583(17):2734-2738.
[28] Zhang S X, Yu Y, Song T Q, et al. Genome-wide identification of foxtail millet’s TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis. Frontiers in Plant Science, 2022,13:946037.
[29] Nuruzzaman M, Sharoni A M, Satoh K, et al. The thioredoxin gene family in rice: Genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochemical and Biophysical Research Communications, 2012, 423(2):417-423.
[30] Elasad M, Wei H L, Wang H T, et al. Genome-wide analysis and characterization of the TRX gene family in upland cotton. Tropical Plant Biology, 2018, 11(3/4):119-130.
[31] Zhang J R, Zhao T, Yan F D, et al. Genome-wide identification and expression analysis of Thioredoxin (Trx) genes in seed development of vitis vinifera. Journal of Plant Growth Regulation, 2022, 41(7):3030-3045.
[32] Li X, Su G J, Ntambiyukuri A, et al. Genome-wide identification and expression analysis of the AhTrx family genes in peanut. Biologia Plantarum, 2022, 66(1):112-122.
[33] Bhurta R, Hurali D T, Tyagi S, et al. Genome-wide identification and expression analysis of the thioredoxin (trx) gene family reveals its role in leaf rust resistance in wheat (Triticum aestivum L.). Frontiers in Genetics, 2022,13:563.
[34] Hägglund P, Björnberg O, Navrot N, et al. The barley grain thioredoxin system-an update. Frontiers in Plant Science, 2013,4:151.
[1] 张俊, 蔡苏云, 徐子豪, 侯蕾, 贺润丽, 尹桂芳, 王莉花, 王艳青, 卢文洁, 孙道旺. 苦荞FtERF基因克隆、生物信息学及其表达分析[J]. 作物杂志, 2024, (2): 23–29
[2] 张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析[J]. 作物杂志, 2024, (2): 30–39
[3] 张玉, 杨文静, 刘璇, 聂峰杰, 张丽, 石磊, 张国辉, 郭志乾, 巩檑. 马铃薯细胞壁蔗糖转化酶基因StCWIN1启动子克隆与表达及其在干旱胁迫下的作用分析[J]. 作物杂志, 2024, (2): 54–61
[4] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[5] 毋莹, 胡蝶, 李婷, 段乾元, 韦宁宁, 张兴华, 徐淑兔, 薛吉全. 玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志, 2024, (1): 80–89
[6] 夏雪, 蔡康锋, 刘磊, 宋秀娟, 汪军妹, 岳文浩. 大麦根形态和分子水平对低磷胁迫响应研究进展[J]. 作物杂志, 2023, (6): 11–16
[7] 赵锋, 包奇军, 潘永东, 柳小宁, 张华瑜, 牛小霞. 70份大麦种质资源遗传多样性评价[J]. 作物杂志, 2023, (6): 54–61
[8] 郜战宁, 杨永乾, 王树杰, 冯辉, 薛正刚. 143份大麦种质资源的综合评价[J]. 作物杂志, 2023, (5): 59–65
[9] 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 77–84
[10] 卢映吉, 杨晓梦, 普晓英, 李霞, 杨丽娥, 杨砚斌, 曾亚文. 不同季节播种和割苗对大麦优良品种农艺性状的影响[J]. 作物杂志, 2023, (3): 215–220
[11] 邱凯华, 方淑梅, 梁喜龙. 稻瘟病菌类SRRM1转录因子的功能分析[J]. 作物杂志, 2023, (3): 246–253
[12] 孟亚轩, 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 主要禾谷类作物DGAT基因家族比较分析[J]. 作物杂志, 2023, (1): 20–29
[13] 赵斌, 季昌好, 孙皓, 朱斌, 王瑞, 陈晓东. 多棱饲用大麦品系粮、草产量及品质的鉴定与综合评价[J]. 作物杂志, 2022, (6): 93–97
[14] 周菲. 向日葵HaLACS7基因的生物信息学和表达分析[J]. 作物杂志, 2022, (3): 104–108
[15] 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 73–79
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!