作物杂志,2025, 第6期: 231–239 doi: 10.16035/j.issn.1001-7283.2025.06.029

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

有机无机肥配施对设施土壤环境及番茄品质的影响

王占海(), 李龙, 赵海波   

  1. 高台县农业技术推广中心, 734300, 甘肃张掖
  • 收稿日期:2025-04-24 修回日期:2025-05-30 出版日期:2025-12-15 发布日期:2025-12-12
  • 作者简介:王占海,主要从事土肥水研究及技术推广研究,E-mail:289512278@qq.com
  • 基金资助:
    2024年市级计划科技项目张掖市盐碱耕地综合治理技术模式集成创新研究与示范推广(ZY2024BJ14)

The Impact of Combined Application of Organic and Inorganic Fertilizers on Facility Soil Environment and Tomato Quality

Wang Zhanhai(), Li Long, Zhao Haibo   

  1. Gaotai County Agricultural Technology Extension Center, Zhangye 734300, Gansu, China
  • Received:2025-04-24 Revised:2025-05-30 Online:2025-12-15 Published:2025-12-12

摘要:

为探究有机无机肥配施对设施番茄土壤环境及产量、品质的调控效应,以番茄中杂102号为试验材料,设置6个施肥处理:不施肥(T1)、100%化肥(T2)、75%化肥+25%农家肥(T3)、50%化肥+50%农家肥(T4)、25%化肥+75%农家肥(T5)和100%农家肥(T6),系统分析不同施肥处理对土壤养分特性、微生物群落结构、酶活性及番茄产量和品质的影响。结果表明,与单施化肥相比,有机无机肥配施处理番茄产量显著提升11.97%~ 34.65%,其中T4处理增产效果最优。T6处理较T2处理显著提升了土壤有机质(30.04%)、有机碳密度(17.43%)及微生物多样性(放线菌和细菌数量增加46.22%和16.87%),同时增强蔗糖酶和脲酶等关键酶活性(P<0.05)。品质分析表明,T6处理的番茄果实可溶性糖和维生素C含量分别较T2处理提高13.80%和13.64%,硝酸盐含量降低21.62%,而T4处理在品质与经济效益上表现均衡,肥料偏生产力达12.21%。综上认为,50%化肥+50%农家肥处理可协同提升番茄产量(12.9%)与果实品质,同时改善土壤微生态环境,是实现设施番茄绿色高值生产的最佳施肥模式。

关键词: 番茄, 化肥减施, 农家肥, 产量, 品质, 土壤肥力

Abstract:

To explore the regulatory effects of combined organic and inorganic fertilizer application on soil environment, yield, and quality of facility tomatoes, using Zhongza 102 as test material, six fertilization treatments were set up: no fertilization (T1), 100% chemical fertilizer (T2), 75% chemical fertilizer+25% farmyard manure (T3), 50% chemical fertilizer+50% farmyard manure (T4), 25% chemical fertilizer+75% farmyard manure (T5), and 100% farmyard manure (T6). The effects of different fertilizer treatments on soil nutrient characteristics, microbial community structure, enzyme activity, and tomato yield and quality were systematically analyzed. The results showed that compared with the application of chemical fertilizers alone, the organic and inorganic fertilizer combination treatment significantly increased tomato yield by 11.97%-34.65%, with T4 treatment showing the best yield increase effect. Compared with T2 treatment, T6 treatment significantly increased soil organic matter (30.04%), organic carbon density (17.43%), and microbial diversity (increasing the number of actinomycetes and bacteria by 46.22% and 16.87%), while enhancing key enzyme activities such as sucrase and urease (P < 0.05). Quality analysis showed that compared with T2 treatment, T6 treatment increased soluble sugar and vitamin C content by 13.80% and 13.64%, respectively, while nitrate content decreased by 21.62%. T4 treatment showed a balance between quality and economic benefits, with fertilizer productivity reaching 12.21%. In summary, 50% chemical fertilizer+50% farmyard manure treatment can synergistically increase tomato yield (12.9%) and fruit quality, while improving the soil microecological environment. It is the best fertilization mode for achieving green and high-value production of facility tomatoes.

Key words: Tomato, Chemical fertilizer reduction, Farm manure, Yield, Quality, Soil fertility

表1

试验设计

处理
Treatment
施肥方式
Fertilization method
农家肥
Farmyard manure
尿素
Urea
过磷酸钙
Calcium superphosphate
硫酸钾
Potassium sulfate
T1 不施肥
T2 100%化肥 1.64 2.56 0.80
T3 75%化肥+25%农家肥 50.60 1.23 1.92 0.60
T4 50%化肥+50%农家肥 101.20 1.14 1.28 0.40
T5 25%化肥+75%农家肥 151.80 0.41 0.64 0.20
T6 100%农家肥 202.40

表2

不同处理对土壤物理性质的影响

处理
Treatment
土壤容重
Soil bulk density
(g/cm3)
土壤总孔隙度
Total soil
porosity (%)
土壤团聚体
Soil aggregate
(%)
T1 1.30±0.01a 50.94±0.52c 32.02±0.16d
T2 1.29±0.03a 51.32±0.26c 32.93±0.29d
T3 1.26±0.02b 52.45±0.57b 34.43±0.45c
T4 1.22±0.02c 53.96±0.65a 37.11±0.22b
T5 1.20±0.01c 54.72±0.29a 38.16±0.15a
T6 1.16±0.02c 56.23±0.53a 39.06±0.18a

表3

不同处理对土壤水分含量的影响

处理
Treatment
自然含水量
Natural moisture
content (g/kg)
田间持水量
Field
capacity (%)
饱和持水量
Saturated water
content (t/hm2)
T1 108.51±0.47d 19.39±0.48d 1018.80±2.70c
T2 112.93±0.87c 20.86±0.59c 1026.45±15.75b
T3 118.13±1.05b 22.19±0.68b 1048.95±14.25b
T4 135.17±1.03a 23.12±0.61a 1078.20±19.95a
T5 138.23±0.95a 23.84±0.60a 1094.40±12.00a
T6 140.39±1.14a 24.33±0.98a 1124.55±13.35a

图1

不同处理对土壤有机质及有机碳的影响 不同小写字母代表在P < 0.05水平下存在显著差异。下同。

表4

不同处理对土壤化学性质的影响

处理Treatment pH 阳离子交换量CEC (cmol/kg)
T1 8.19±0.04a 17.86±0.45e
T2 8.17±0.02a 19.45±0.44d
T3 8.15±0.03a 19.89±0.65c
T4 8.12±0.02a 20.78±0.57b
T5 8.09±0.04a 21.44±0.55a
T6 8.06±0.02a 22.11±0.51a

图2

不同处理对土壤微生物的影响

图3

不同处理对土壤酶活性的影响

图4

不同处理对土壤重金属含量的影响

表5

不同处理对番茄经济性状及产量的影响

处理
Treatment
单果重
Single fruit
weight (g)
单株果重(kg/株)
Fruit weight
per plant
产量
Yield
(kg/hm2)
T1 113.85±1.38e 1.17±0.05e 64 789.50±141.20e
T2 134.63±3.05d 1.31±0.03d 72 550.50±135.70d
T3 139.16±2.05c 1.39±0.01c 77 179.50±91.10c
T4 149.61±2.33a 1.57±0.01a 87 240.10±128.77a
T5 145.59±1.49a 1.52±0.03a 84 619.50±121.30a
T6 141.70±2.46b 1.48±0.02 b 82 390.50±150.20b

图5

不同处理对番茄果实中可溶性糖、维生素C、硝酸盐及可滴定酸含量的影响

表6

不同处理对番茄经济效益的影响

处理
Treatment
增产量
Yield increase
(kg/hm2)
增产值(元/hm2
Output value increase
(yuan/hm2)
施肥成本(元/hm2
Fertilizer cost
(yuan/hm2)
施肥利润(元/hm2
Profit from fertilization
(yuan/hm2)
肥料投资效率
Fertilizer investment
efficiency (%)
T1
T2 7759.5 23 299.5 2899.5 20 400.0 7.03
T3 12 390.0 37 200.0 4099.5 33 100.5 8.07
T4 22 450.5 67 399.5 5100.0 62 299.5 12.21
T5 19 830.0 59 500.5 6199.5 53 301.0 8.60
T6 17 599.5 52 800.0 7300.5 45 499.5 6.23
[1] 刘钦. 乡村振兴战略背景下我国蔬菜产业发展分析. 北方园艺, 2020(4):142-147.
[2] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策. 植物营养与肥料学报, 2017, 23(6):1480-1493.
[3] 何文寿. 设施农业中存在的土壤障碍及其对策研究进展. 土壤, 2004, 36(3):235-242.
[4] 邬刚, 袁嫚嫚, 王家宝, 等. 有机肥替代化肥对设施番茄产量·品质和土壤养分的影响. 安徽农业科学, 2023, 51(23):117-119.
[5] 董文, 张青, 罗涛, 等. 不同有机肥连续施用对土壤质量的影响. 中国农学通报, 2020, 36(28):106-110.
doi: 10.11924/j.issn.1000-6850.casb20190900660
[6] 祝海燕, 田素波, 李春雷, 等. 化肥减量配施生物有机肥对口感型番茄生长及品质的影响. 江苏农业科学, 2023, 51(19):125-130.
[7] 郑剑超, 李明, 董飞. 减施化肥增施有机肥和菌肥对番茄产量及土壤微生物和酶活性的影响. 中国农学通报, 2024, 40(9):48-54.
doi: 10.11924/j.issn.1000-6850.casb2023-0367
[8] 汪自松, 秦玉秀, 沈伟, 等. 化肥减量配施有机肥对樱桃番茄土壤生物学特性及产量、品质的影响. 中国土壤与肥料, 2024(2):58-64.
[9] 马荣辉, 梁金英, 王宪刚, 等. 化肥减量配施有机肥对设施番茄产量、品质和土壤肥力的影响. 北方园艺, 2023(24):45-51.
[10] 洪春来, 王卫平, 姚燕来, 等. 不同有机肥施用对樱桃番茄产量及品质的影响. 安徽农学通报, 2023, 29(1):83-85.
[11] 宋红梅, 吴昕阳, 石馨晔, 等. 长期施肥对黄土旱塬麦田土壤团聚体及有机碳组分的影响. 应用与环境生物学报, 2024, 30(4):726-734.
[12] Shu X Y, He J, Zhou Z H, et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: a meta-analysis. The Science of the Total Environment, 2022, 829:154627.
doi: 10.1016/j.scitotenv.2022.154627
[13] 费裕翀, 黄樱, 张筱, 等. 不同有机肥处理对紫色土油茶林土壤微生物群落结构的影响. 应用与环境生物学报, 2020, 26(4):919-927.
[14] Wang J C, Song Y, Ma T F, et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 2017, 112:42-50.
doi: 10.1016/j.apsoil.2017.01.005
[15] 马啸驰, 韩烽, 白亚涛, 等. 有机物料在果园生态系统中的应用及其环境效应:研究现状与展望. 中国生态农业学报(中英文), 2023, 31(8):1240-1255.
[16] 付靖怡, 孟星尧, 王清萍, 等. 有机肥料中新污染物及对环境影响的评价. 中国土壤与肥料, 2024(6):259-268.
[17] Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. European Journal of Agronomy, 2009, 30(2):129-139.
doi: 10.1016/j.eja.2008.09.001
[18] Bogard M, Allard V, Brancourt-Hulmel M, et al. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Euphytica, 2010, 61(15):4303-4312.
[19] Wang Y H. Effects of different fertilizing treatments on contents of soil nutrients and soil enzyme activity. Soils, 2010, 42(2):249-255.
[20] Elfstrand S, Hedlund K, Mårtensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology, 2007, 35(3):610-621.
doi: 10.1016/j.apsoil.2006.09.011
[21] Nakhro N, Dkhar M S. Impact of organic and inorganic fertilizers on microbial populations and biomass carbon in paddy field soil. Journal of Agronomy, 2010, 9(3):102.
doi: 10.3923/ja.2010.102.110
[22] 王彩虹. 有机肥替代部分化肥对小麦生产及土壤理化性质的影响. 安徽农学通报, 2025, 31(9):31-34.
doi: 10.16377/j.cnki.issn1007-7731.2025.09.007
[23] Yang Y H, Li M J, Wu J C, et al. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat. Frontiers in Plant Science, 2022, 8(12):788651.
[24] Yang Y H, Wu J C, Zhao S W, et al. Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography. Scientific Reports, 2018, 8(1):695.
doi: 10.1038/s41598-017-18997-1 pmid: 29330452
[25] Guo Z C, Zhang J B, Fan J, et al. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment, 2019, 660:1029-1037.
doi: 10.1016/j.scitotenv.2019.01.051
[26] 范海新. 家禽粪便发酵有机肥在大田作物应用初探. 家禽科学, 2024, 46(11):115-117.
[27] 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析. 农业环境科学学报, 2020, 39(6):1168-1176.
[28] 朱建春, 张增强, 樊志民, 等. 中国畜禽粪便的能源潜力与氮磷耕地负荷及总量控制. 农业环境科学学报, 2014, 33(3):435-445.
[29] 何志学, 朱惠霞, 张玉鑫, 等. 减量条件下化肥有机肥配施对番茄产量和品质的影响. 中国瓜菜, 2025, 1(5):59-68.
[30] 董鹏荣, 梁祎, 韩敬旭, 等. 氮钾化肥减施和有机肥增施对番茄果实品质及矿质元素含量的影响. 中国土壤与肥料, 2023(1):13-22.
[31] 徐朝阳. 2,6-二氯酚靛酚滴定法与碘量法测定蔬菜水果中维生素C方法的准确度比较. 食品安全导刊, 2021(25):100-101.
[32] 杨路宽, 李红洲, 王振兴, 等. 6个品种李果实品质差异性分析. 食品安全质量检测学报, 2025, 16(8):267-275.
[33] 张瑜瑜, 宋怀飞, 刘佳妮, 等. 云南主栽蓝莓果实可滴定酸及抗氧化活性评价研究. 东北农业科学, 2023, 48(1):124-128,135.
[34] 吴家明, 于爽, 迟雪梅, 等. 添加大蒜汁对酸菜发酵亚硝酸盐控制机理的探讨. 中国调味品, 2025, 50(3):68-75.
[35] 郝利, 司振江, 王柏. 免耕与秸秆覆盖还田对寒地黑土区土壤物理结构特性的影响研究. 水利科学与寒区工程, 2025, 8(4):1-6.
[36] 张振, 张永丽, 石玉, 等. 灌溉量对冬小麦耗水量、旗叶衰老及产量的影响. 植物营养与肥料学报, 2023, 29(3):393-402.
[37] 李志涛, 马文婧, 朱金勇, 等. 膜下滴灌条件下不同田间持水量对马铃薯根系分布及其产量的影响. 华北农学报, 2022, 37(增1):161-171.
[38] 徐锴, 周凌雁, 魏涛, 等. 分光光度法测定土壤阳离子交换量的影响因素及方法优化. 干旱环境监测, 2024, 38(1):17-22.
[39] 邵玟玥, 于锐, 赵光影, 等. 富铁有机肥对重度苏打盐碱地土壤有机质及细菌群落的影响. 中国环境科学, 2025, 45(8):4458-4469.
[40] 李景峰, 郭全恩, 梁鹏飞, 等. 不同草本植物对铜镍复合胁迫的生理耐受性. 干旱地区农业研究, 2023, 41(4):167-177.
[41] 张书豪, 王玉洁, 何冰, 等. 间作甘薯对烤烟根际土壤养分、酶活性及微生物群落的影响. 中国土壤与肥料, 2025(2):53-64.
[42] 刘红江, 陈虞雯, 孙国峰, 等. 有机肥-无机肥不同配施比例对水稻产量和农田养分流失的影响. 生态学杂志, 2017, 36(2):405-412.
[43] 喻万明. 有机肥与化肥配施对白凤桃产量和品质及经济效益的影响. 寒旱农业科学, 2024, 3(8):764-768.
[44] 徐路路, 王晓娟. 有机肥等氮量替代化肥对土壤养分及酶活性的影响. 中国土壤与肥料, 2023(1):23-29.
[45] 胡远彬, 张靓, 梁小玉, 等. 有机肥与化肥配施对夏播玉米产量和土壤肥力的影响. 草学, 2024(4):26-32.
[46] 蒋强, 刘子凡, 王燕武, 等. 生物有机肥替代化肥对樱桃番茄产量、品质及土壤理化性质的影响. 中国瓜菜, 2023, 36(10):71-77.
[47] 虞轶俊, 马军伟, 陆若辉, 等. 有机肥对土壤特性及农产品产量和品质影响研究进展. 中国农学通报, 2020, 36(35):64-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0110
[48] 许泽华, 马军, 李百云, 等. 不同用量有机肥和生物菌肥配施对设施番茄土壤性能和品质的影响. 中国瓜菜, 2025, 38(3):131-137.
[49] 司艳娥, 如克艳木·买提司地克, 艾克拜尔·伊拉洪, 等. 生物有机肥对枸杞品质及土壤酶活性的影响. 新疆农业科学, 2025, 62(2):350-360.
doi: 10.6048/j.issn.1001-4330.2025.02.011
[50] 佟瑶, 邹丹蓉, 黄钰淇, 等. 不同土壤条件下黄渡番茄风味品质差异. 植物研究, 2025, 45(2):217-227.
doi: 10.7525/j.issn.1673-5102.2025.02.008
[51] 王丽, 陈立明, 王鹏飞, 等. 有机肥配施菌肥对欧李果实品质和土壤性质的影响. 浙江农业学报, 2025, 37(4):820-830.
doi: 10.3969/j.issn.1004-1524.20240328
[52] 王超, 刘欣宇, 赵宝龙, 等. 生物有机肥对温室番茄品质和土壤肥力的影响. 北方园艺, 2024(16):32-40.
[53] 赵成雷, 于建, 郭新送, 等. 有机肥替代化肥对设施番茄产量、品质及土壤性状的影响. 山东农业科学, 2023, 55(8):116-120.
[54] Deforest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology & Biochemistry, 2009, 41(6):1180-1186.
doi: 10.1016/j.soilbio.2009.02.029
[55] 王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响. 应用生态学报, 2020, 31(1):173-181.
doi: 10.13287/j.1001-9332.202001.022
[56] 袁英英, 李敏清, 胡伟, 等. 生物有机肥对番茄青枯病的防效及对土壤微生物的影响. 农业环境科学学报, 2011, 30(7):1344-1350.
[1] 李青欣, 金秀良, 宋晓, 张珂珂, 郭腾飞, 黄绍敏, 岳克, 丁世杰, 黄明, 李友军. 有机肥部分替代氮肥对豫东冬小麦生长及土壤特性的影响[J]. 作物杂志, 2025, (6): 121–131
[2] 陈雷, 唐茂艳, 张战营, 钟晓媛, 高国庆, 张晓丽, 梁天锋, 潘英华. 花期高温胁迫下水稻种质资源的外观品质分析与评价[J]. 作物杂志, 2025, (6): 132–139
[3] 高文瑞, 孙艳军, 韩冰, 张晓青, 王显生, 郑子松. 外源有机硒对设施樱桃番茄产量及果实品质的影响[J]. 作物杂志, 2025, (6): 140–147
[4] 陈志豪, 王婷, 常旭虹, 王艳杰, 刘希伟, 杨玉双, 王玉娇, 王德梅, 赵广才. 黄淮冬麦区北片冬小麦产量和品质性状的综合分析[J]. 作物杂志, 2025, (6): 148–155
[5] 兰秀, 梁振华, 杨海霞, 李恒锐, 阮丽霞, 韦婉羚, 陈会鲜, 何洪良, 黄若兰, 赵春慧, 汤丹峰. 甘蔗―凉粉草间作对土壤理化性质及作物产量的影响[J]. 作物杂志, 2025, (6): 156–163
[6] 秦娜娜, 黄淋华, 陈莹, 王胜谋, 谢勇, 缪凯, 李万明, 戚兰. 叶面喷施丙酰芸苔素内酯对夏大豆光合作用、农艺性状和产量的影响[J]. 作物杂志, 2025, (6): 164–171
[7] 王舒琦, 李建波, 刘志萍, 马宇, 渠佳慧, 巴图, 徐寿军. 不同栽培模式下大麦产量与蛋白质形成的生理机制研究[J]. 作物杂志, 2025, (6): 172–180
[8] 颜小文, 梁俊超, 曾攀, 周红英, 王郅琪, 乐美旺, 孙建. 迟播对秋芝麻主要农艺性状及产量的影响[J]. 作物杂志, 2025, (6): 189–194
[9] 张艾英, 赵媛, 刘敏, 薛红桃, 王国梁, 王瑞, 郭二虎. 不同收获时间和收获方式下谷子产量与品质的响应[J]. 作物杂志, 2025, (6): 195–202
[10] 夏玉兰, 赵园园, 李娟, 王德勋, 王婷婷, 杨成伟, 史宏志. 钾肥不同追施比例对红花大金元和云烟300生长、产量及质量的影响[J]. 作物杂志, 2025, (6): 225–230
[11] 范国华, 冯晓敏, 高翔, 吕慧卿, 杨静, 张旭丽, 郝志萍, 周忠宇, 张力, 李洪. 垄作覆膜与有机肥施用对小粒黑豆产量形成及土壤有机碳组分的影响[J]. 作物杂志, 2025, (6): 240–247
[12] 高美萍, 陶运荣, 蒋慧萍, 胡一凤, 林志城, 方彦蓉, 欧阳秀, 江文. 不同氮肥处理对荸荠产量、淀粉积累速率及淀粉合成酶活性的影响[J]. 作物杂志, 2025, (6): 248–253
[13] 周婷芳, 李冉, 刘倩倩, 张泽, 王振华, 马宝新, 路明, 张林, 韩业辉, 杨波, 李明顺, 张德贵, 翁建峰, 雍洪军, 徐晶宇, 韩洁楠, 李新海. 东北区118份玉米杂交种萌发期耐盐性分析[J]. 作物杂志, 2025, (5): 1–10
[14] 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 11–18
[15] 马强, 李延坤, 王桂娥, 文婷婷, 张天雨, 田纪春, 王延训. 山东省审定彩色小麦品种农艺性状和品质分析及改良方向研究[J]. 作物杂志, 2025, (5): 113–119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!