作物杂志,2017, 第1期: 1419 doi: 10.16035/j.issn.1001-7283.2017.01.003
周志波1,2,易亚科1,2,陈光辉1,2
Zhou Zhibo1,2,Yi Yake1,2,Chen Guanghui1,2
摘要:
综述水稻不同营养器官Cd吸收途径以及水稻根系Cd吸收、根系Cd外排、细胞壁Cd固定和液泡区室化作用、根系向地上部运输Cd等过程中参与Cd运输的各种转运蛋白功能的研究,并阐述影响水稻Cd吸收、转运的内在和外在因素,在此基础上提出问题和今后研究方向。
[1] | 李婧, 周艳文, 陈森 , 等. 我国土壤镉污染现状、危害及其治理方法综述. 安徽农学通报, 2015,21(24):104-107. |
[2] | 史静, 潘根兴, 夏运生 , 等. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响.生态环境学报, 2013(5):832-837. |
[3] | 李冰, 王昌全, 李枝 , 等. Cd胁迫下杂交水稻对Cd的吸收及其动态变化.生态环境学报, 2014(2):312-316. |
[4] |
Mendez-Armenta M, Rios C . Cadmium neurotoxicity. Environmental Toxicology Pharmacology, 2007,23:350-358.
doi: 10.1016/j.etap.2006.11.009 |
[5] | 孟桂元, 蒋端生, 柏连阳 , 等. Cd胁迫下苎麻的生长响应与富集、转运特征研究. 生态科学, 2012,31(2):192-196. |
[6] | 杨朝东, 张霞, 刘国锋 , 等. 植物根中质外体屏障结构和生理功能研究进展.植物研究, 2013(1):114-119. |
[7] | 曾翔 . 水稻镉积累和耐性机理及其品种间差异研究. 长沙:湖南农业大学, 2006. |
[8] | 张利强 . 水稻重金属镉的吸收、转运和积累特性研究. 北京:中国农业科学院, 2012. |
[9] | 李燕婷, 李秀英, 肖艳 , 等. 叶面肥的营养机理及应用研究进展.中国农业科学, 2009(1):162-172. |
[10] | 龙思斯, 宋正国, 雷鸣 , 等. 不同外源镉对水稻生长和富集镉的影响研究.农业环境科学学报, 2016(3):419-424. |
[11] |
Verbruggen N, Hermans C, Schat H . Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 2009,12(3):364-372.
doi: 10.1016/j.pbi.2009.05.001 |
[12] | 王亚平, 潘小菲, 许春雪 , 等. 土壤对镉离子的竞争吸附研究—以北京城近郊为例.岩矿测试, 2007(4):251-256. |
[13] | 张参俊, 尹洁, 张长波 , 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响.农业环境科学学报, 2015(6):1028-1033. |
[14] | 杨菲, 唐明凤, 朱玉兴 . 水稻对镉的吸收和转运的分子机理.杂交水稻, 2015(3):2-8. |
[15] |
Moons A . Ospdr9,which encodes a PDR-type ABC transporter,is induced by heavy metals,hypoxic stress and redox perturbations in rice roots. FEBS Letters, 2003,553(3):370-376.
doi: 10.1016/S0014-5793(03)01060-3 |
[16] | Ishimaru Y, Bashir K, Nakanishi H , et al. OsNRAMP5,a major player for constitutive iron and manganese uptake in rice. Plant Signaling & Behavior, 2012,7(7):763-766. |
[17] |
Yongjie Y, Jie X, Ruijie C . Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa.). Environmental and Experimental Botany, 2016,122:141-149.
doi: 10.1016/j.envexpbot.2015.10.001 |
[18] |
Curie C, Cassin G, Couch D , et al. Metal movement within the plant:Contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009,103(1):1-11.
doi: 10.1093/aob/mcn207 |
[19] |
Hugo S, Yasuhiro I, Gynheung A . Low cadmium (LCD),a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011,62(15):5727-5734.
doi: 10.1093/jxb/err300 |
[20] |
Lee S, Kim Y Y, Lee Y , et al. Rice P1B-type heavy-metal AT-Pase,OsHMA9,is a metal efflux protein. Plant Physiology, 2007,145(3):831-842.
doi: 10.1104/pp.107.102236 |
[21] | 段德超, 于明革, 施积炎 . 植物对铅的吸收、转运、累积和解毒机制研究进展.应用生态学报, 2014(1):287-296. |
[22] |
Xiong J, An L, Lu H , et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009,230(4):755-765.
doi: 10.1007/s00425-009-0984-5 |
[23] | 刘宝秀, 袁连玉, 王晶 , 等. 水稻金属耐受蛋白基因OsMTP2生物信息学及表达分析.热带亚热带植物学报, 2012(1):8-12. |
[24] |
Sasaki A, Yamaji N, Ma J F . Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014,65(20):6013-6021.
doi: 10.1093/jxb/eru340 |
[25] |
Huang X Y, Deng F, Yamaji N , et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nature Communications, 2016,7:12138.
doi: 10.1038/ncomms12138 |
[26] |
Vliet V L, Peterson C, Hale B . Cd accumulation in roots and shoots of durum wheat:the roles of transpiration rate and apoplastic bypass. Journal of Experimental Botany, 2007,58(11):2939-2947.
doi: 10.1093/jxb/erm119 |
[27] | 张军, 束文圣 . 植物对重金属镉的耐受机制.植物生理与分子生物学学报, 2006(1):1-8. |
[28] |
Xin J L, Huang B H, Dai H W . Difference in root-to-shoot Cd translocation and characterization of Cd accumulation during fruit development in two capsicum annuum cultivars. Plant and Soil, 2015,394(1-2):287-300.
doi: 10.1007/s11104-015-2535-0 |
[29] | 韩立娜, 居学海, 张长波 , 等. 水稻镉离子流速的基因型差异及其与镉积累量的关系研究.农业环境科学学报, 2014(1):37-42. |
[30] |
Fontanili L, Lancilli C, Suzui N , et al. Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice, 2016,9(1):16.
doi: 10.1186/s12284-016-0088-3 |
[31] | 柳检, 罗立强 . As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展.岩矿测试, 2015(3):269-277. |
[32] |
Oda K, Otani M, Uraguchi S , et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Bioscience Biotechnology Biochemistry, 2011,75(6):1211-1213.
doi: 10.1271/bbb.110193 |
[33] |
Satoh-Nagasawa N, Mori M, Sakurai K , et al. Functional relationship heavy metal P-type ATPases (OsHMA2 and OsHMA3) of rice (Oryza sativa) using RNAi. Plant Biotechnology, 2013,30(5):511-515.
doi: 10.5511/plantbiotechnology.13.0616a |
[34] |
Meng Y, Yuanyuan Z, Lejing Z , et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014,65(17):4849-4861
doi: 10.1093/jxb/eru259 |
[35] |
Takahashi R, Ishimaru Y, Senoura T , et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011,62(14):4843-4850.
doi: 10.1093/jxb/err136 |
[36] |
Tanaka K, Fujimaki S, Fujiwara T , et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2007,53(1):72-77.
doi: 10.1111/j.1747-0765.2007.00116.x |
[37] |
Yoneyama T, Ishikawa S, Fujimaki S . Route and regulation of zinc,cadmium,and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling:Metal transporters,metal speciation,grain Cd reduction and Zn and Fe biofortification. International Journal Molecular Sciences, 2015,16(8):19111-19129.
doi: 10.3390/ijms160819111 |
[38] |
Kobayashi N I, Tanoi K, Hirose A . Characterization of rapid inter vascular transport of cadmium in rice stem by radioisotope imaging. Journal of Experimental Botany, 2013,64(2):507-517.
doi: 10.1093/jxb/ers344 |
[39] |
Tanaka K, Fujimaki S, Fujiwara T , et al. Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L) treated with a nutrient solution containing cadmium. Soil Science and Plant Nutrition, 2003,49(2):311-313.
doi: 10.1080/00380768.2003.10410014 |
[40] |
Kashiwagi T, Shindoh K, Hirotsu N , et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biology, 2009,9(8):1-10.
doi: 10.1186/1471-2229-9-1 |
[41] |
Yamaji N, Xia J X, Mitani-Ueno N , et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013,162(2):927-939.
doi: 10.1104/pp.113.216564 |
[42] |
Shimpei U, Takehiro K, Takuya S . Low-affinity cation transporter(OsLCT1) regulates cadmium transport into rice grains. Proceedings of The National Academy of Sciences of The Stations of America, 2011,108(52):20959-20964.
doi: 10.1073/pnas.1116531109 |
[43] | 曾翔, 张玉烛, 王凯荣 , 等. 不同品种水稻糙米含镉量差异.生态与农村环境学报, 2006(1):67-69,83. |
[44] | 李坤权, 刘建国, 陆小龙 , 等. 水稻不同品种对镉吸收及分配的差异.农业环境科学学报, 2003(5):529-532. |
[45] | 张洪江 . 镉安全水稻亲本材料的筛选及其生理机制研究. 成都:四川农业大学, 2012. |
[46] |
Ueno D, Kono I, Yokosho K , et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009,182(3):644-653.
doi: 10.1111/j.1469-8137.2009.02784.x |
[47] |
Ishikawa S, Ae N, Yano M . Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice. New Phytologist, 2005,168(2):345-350.
doi: 10.1111/j.1469-8137.2005.01516.x |
[48] | 刘利, 郝小花, 田连福 , 等. 植物吸收、转运和积累镉的机理研究进展.生命科学研究, 2015(2):176-184. |
[49] | 陈京都, 刘萌, 顾海燕 , 等. 不同土壤质地条件下麦秸、铅对镉在水稻-土壤系统中迁移的影响.农业环境科学学报, 2011(7):1295-1299. |
[50] | 吴曼, 徐明岗, 徐绍辉 , 等. 有机质对红壤和黑土中外源铅镉稳定化过程的影响. 农业环境科学学报, 2011,30(3):461-467. |
[51] | 陈雪, 刘丹青, 王淑 , 等. 不同土壤的还原状况对铁镉形态转化和水稻吸收的影响.土壤学报, 2013(3):548-555. |
[52] | 杨忠芳, 陈岳龙, 钱鑂 , 等. 土壤pH对镉存在形态影响的模拟实验研究.地学前缘, 2005(1):252-260. |
[53] | 陈爱葵, 王茂意, 刘晓海 , 等. 水稻对重金属镉的吸收及耐性机理研究进展.生态科学, 2013(4):514-522. |
[54] | 张雪霞, 张晓霞, 郑煜基 , 等. 水分管理对硫铁镉在水稻根区变化规律及其在水稻中积累的影响.环境科学, 2013(7):2837-2846. |
[55] | 何洋, 刘洋, 方宝华 , 等. 温度对不同水稻品种糙米镉(Cd)含量的影响.中国稻米, 2016(2):31-35. |
[56] | 贾倩, 胡敏, 张洋洋 , 等. 钾硅肥施用对水稻吸收铅、镉的影响.农业环境科学学报, 2015(12):2245-2251. |
[1] | 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 1720 |
[2] | 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 2126 |
[3] | 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116120 |
[4] | 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137143 |
[5] | 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 4852 |
[6] | 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 5361 |
[7] | 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 6978 |
[8] | 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 17 |
[9] | 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 6876 |
[10] | 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129134 |
[11] | 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 814 |
[12] | 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141147 |
[13] | 曹玉巧,聂庆凯,高云,许自成黄五星,. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 1524 |
[14] | 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 15 |
[15] | 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166170 |
|