作物杂志,2018, 第6期: 96–102 doi: 10.16035/j.issn.1001-7283.2018.06.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮磷钾配施对小麦植株养分吸收利用和产量的影响

龙素霞2,李芳芳1,石书亚1,赵颖佳1,肖凯1   

  1. 1 河北农业大学农学院/河北省作物生长调控重点实验室,071001,河北保定
    2 河北省唐山市玉田县农牧局,064100,河北唐山
  • 收稿日期:2018-06-25 修回日期:2018-10-15 出版日期:2018-12-15 发布日期:2018-12-06
  • 作者简介:龙素霞,农艺师,主要从事农业技术推广工作
  • 基金资助:
    河北省科技计划项目(162276433G)

Effects of Coordinately Application of N, P, and K on Nutrient Contents in Plants and Soils and Wheat Yield

Long Suxia2,Li Fangfang1,Shi Shuya1,Zhao Yingjia1,Xiao Kai1   

  1. 1 College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei, China
    2 Agriculture and Livestock of Yutian County, Tangshan 064100, Hebei, China
  • Received:2018-06-25 Revised:2018-10-15 Online:2018-12-15 Published:2018-12-06

摘要:

采用大田试验,研究了不同氮水平与磷、钾配施对小麦植株氮磷钾含量、土壤速效氮磷钾含量和产量的影响。结果表明,在低氮(135kg N/hm 2)、中氮(225kg N/hm 2)和高氮(315kg N/hm 2)与2个磷钾用量(P2O5-K2O,90-120、135-180kg/hm 2)处理组合中,各处理不同生育时期植株干重、氮钾含量、氮钾累积量随供氮水平提高而增高;等氮条件下,增施磷钾使植株含氮量降低,植株氮、磷和钾累积量随磷钾用量增加而增多。各施肥处理生育期间土壤碱解氮含量呈波动性变化,表现为起身期较冬前降低,起身至开花期不断增高,开花期至灌浆期明显下降,灌浆期至成熟期有所回升的特征。随生育进程,各处理土壤速效磷含量不断降低,土壤速效钾含量呈“V”字形变化,在开花期达到谷底。高氮水平各生育时期的土壤速效磷、钾含量低于低氮处理;等氮水平下增施磷、钾肥处理的土壤速效磷、钾含量提高。单位面积穗数随供氮增多而增加,穗粒数和千粒重以中氮处理最高;产量表现与穗数相似,但中、高氮处理差异较小。等氮水平下,增施磷钾可明显改善各产量构成因素和产量。随供氮增多,单位氮素生产子粒能力降低,氮肥利用率下降;单位磷、钾素生产子粒能力随氮素用量增多呈低—高—低变化。研究表明,中氮(225kg N/hm 2)配施磷钾(P2O5-K2O,90-120kg/hm 2或135-180kg/hm 2)有利于调节生育期间土壤养分供应,改善植株养分吸收、干物质生产和产量形成能力。

关键词: 小麦, 氮磷钾配施, 植株养分吸收, 土壤速效养分含量, 产量

Abstract:

In this study, the effects of coordinately application of nitrogen (N), phosphorus (P), and potassium (K) on nutrient contents in plants and soils as well as yield in wheat were investigated under field conditions. Results indicated that among the treatments covering three N levels (i.e., low N with 135kg N/hm 2, medium N with 225kg N/hm 2, and high N with 315kg N/hm 2) and two levels of P and K amounts (i.e., P2O5-K2O 90-120kg/hm 2 and P2O5-K2O 135-180kg/hm 2),the plant biomass, concentrations and accumulative amounts of N and K were increased along with the elevated N levels. Under the equal N condition, the treatments with more P and K exhibited lowered N concentrations in plants whereas the accumulative amounts of N, P, and K were elevated with the increase of P and K amounts. The N available contents in soils at various growth stages across the nutrient treatments exhibited a fluctuating pattern, showing decreases at erection stage relative to before winter, gradually elevation from erection stage to flowering stage, decline from flowering to filling stage, and re-rising from filling to the maturity stage. Along with growth progression, the available P contents in soils gradually reduced whereas the soil available K contents changed in a "V" style pattern that was the lowest at flowering stage. Meanwhile, the available contents of P and K at various growth stages under high N level condition were lower than those under lower N level condition. Under the equal N condition, the available contents of P and K in soils were increased in treatments supplemented with more P and K amounts. The spike numbers per unit was elevated with the increased N whereas the kernel numbers per spike and 1000-grain weight reached the peaks at medium N condition. The yields were similar to spike numbers, but relatively little variation observed between the treatments of medium N and high N. At equal N condition, the treatments with increased P and K drastically improved the yield components and yields. Along with increase of the N levels, the grain production capacity per N unit whereas the grain production capacity per unit of P and K exhibited a low-high-low pattern. These results indicate that the medium N treatment (225kg N/hm 2) together with coordinately application of P and K (P2O5-K2O 90-120kg/hm 2and P2O5-K2O 135-180kg/hm 2) can positively regulate the nutrient supply in soils by which to improve the plant nutrient uptake, biomass production, and yield formation.

Key words: Wheat, Coordinately application of N, P, and K, Plant nutrient acquisition, Available nutrient contents in soils, Yield

表1

试验设计"

处理Treatment N P2O5 K2O
T1 135 90 120
T2 135 135 180
T3 225 90 120
T4 225 135 180
T5 315 90 120
T6 315 135 180
对照Control (CK) 0 0 0

图1

不同处理各生育时期的植株干重和氮磷钾含量 同组中小写字母不同表示差异达到统计学0.05水平。下同"

图2

不同处理各生育时期的植株氮磷钾累积量"

图3

不同处理各生育时期的土壤速效氮磷钾含量"

表2

不同处理的产量构成因素、产量和收获指数"

处理
Treatment
穗数(×104/hm2)
Spike number
穗粒数
Spike number per spike
千粒重(g)
1000-grain weight
产量(kg/hm2)
Yield
增产幅度(%)
Yield increase
收获指数
Harvest index
CK 629.25±12.24c 30.83±1.03d 39.61±1.21c 6 916.00±232.12d - 0.501±0.002a
T1 687.90±14.08b 32.30±1.20c 40.41±0.83bc 8 080.56±310.07c 16.84 0.479±0.003b
T2 730.20±15.33ab 33.12±1.32bc 41.29±1.02ab 8 987.04±233.98b 29.95 0.480±0.003b
T3 728.10±15.06ab 34.12±1.28ab 41.42±0.68a 9 260.64±208.16b 33.90 0.478±0.006b
T4 742.95±11.86ab 34.87±1.43a 41.86±0.82a 9 760.56±286.13a 41.13 0.481±0.005b
T5 742.01±15.32ab 34.02±1.35a 41.37±0.56a 9 399.87±302.18b 35.91 0.439±0.003c
T6 757.20±13.93a 34.83±1.20a 39.61±0.48c 9 896.87±282.10a
43.10 0.442±0.003c

表3

不同处理单位氮、磷、钾生产子粒能力"

处理
Treatment
氮素(kg/kg N)
Nitrogen
磷素(kg/kg P2O5)
Phosphorus
钾素(kg/kg K2O)
Potassium
CK 56.18±2.12a 227.27±5.12a 66.67±1.02a
T1 45.28±1.40b 177.78±3.87c 53.33±0.98bc
T2 45.71±2.10b 175.52±3.80cd 52.17±1.23c
T3 44.04±1.28b 184.62±2.86b 54.55±1.56b
T4 44.86±1.42b 177.78±3.12c 53.33±0.87bc
T5 39.16±1.13c 182.72±2.38b 52.21±1.28c
T6 40.19±0.87c 170.05±3.12d 52.02±1.10c
[1] 刘建玲, 贾可, 廖文华 , 等. 太行山山麓平原30年间土壤养分与供肥能力变化. 土壤学报, 2015,52(6):1325-1335.
[2] 马文奇, 张福锁, 张卫锋 . 关乎我国资源、环境、粮食安全和可持续发展的化肥产业. 资源科学, 2005,27(3):33-40.
[3] 张士贤 . 中国土地资源保护与平衡施肥技术对策. 北京: 中国农业科技出版社, 1994: 1-10.
[4] 李秋梅, 陈新平, 张福锁 , 等. 冬小麦-夏玉米轮作体系中磷钾平衡的研究. 植物营养与肥料学报, 2002,8(2):152-156.
doi: 10.3321/j.issn:1008-505X.2002.02.004
[5] 刘善江, 张成军 . 京郊小麦玉米轮作系统磷肥施用技术的研究. 华北农学报, 1998(13):39-42.
[6] 曾宪坤 . 中国化肥工业的现状和展望. 土壤学报, 1995,32(2):117-125.
[7] 李云, 张宁, 邢文英 , 等. 一年两熟地区小麦的磷肥累积利用率研究. 中国土壤与肥料, 2002(4):26-29.
doi: 10.11838/sfsc.20020407
[8] Richter J, Roelcke M . The N-cycle as determined by intensive agriculture: examples from central Europe and China. Nutrient Cycling in Agroecosystem, 2000,57(1):33-46.
doi: 10.1023/A:1009802225307
[9] 黄国勤, 王兴祥, 钱海燕 , 等. 施用化肥对农业生态环境的负面影响及对策. 生态环境, 2004,13(4):656-660.
doi: 10.3969/j.issn.1674-5906.2004.04.055
[10] 韩燕来, 刘征 . 超高产冬小麦氮磷钾吸收、分配与运转规律的研究. 作物学报, 1998,24(6):908-915.
[11] 赵俊晔, 于振文, 李延奇 , 等. 施氮量对小麦氮磷钾养分吸收利用和产量的影响. 西北植物学报, 2006,26(1):98-103.
[12] 吴国梁, 崔秀珍 . 高产小麦氮磷钾营养机理和需肥规律研究. 中国农学通报, 2000,16(2):8-11.
doi: 10.3969/j.issn.1000-6850.2000.02.003
[13] 李丙申, 丁春国 . 小麦高产经济施肥技术指标和参数. 华北农学报, 1992,7(4):68-72.
doi: 10.3321/j.issn:1000-7091.1992.04.013
[14] 王振华, 张喜英, 陈素英 , 等. 分层施肥及供水对冬小麦生理特性、根系分布和产量的影响. 华北农学报, 2008,23(6):176-180.
doi: 10.7668/hbnxb.2008.06.041
[15] 姜孟辉, 张拴庄, 薛世川 , 等. 肥料合理调配对土壤养分动态及小麦产量的影响. 华北农学报, 2008,23(增刊):286-289.
[16] 王艳群, 彭正萍, 薛世川 , 等. 过量施肥对设施农田土壤生态环境的影响. 农业环境科学学报, 2005,24(增刊):81-84.
doi: 10.3321/j.issn:1672-2043.2005.z1.020
[17] 朱建华, 李俊良, 李晓林 , 等. 几种复合肥施用对蔬菜保护地土壤环境质量的影响. 农业环境科学学报, 2002,21(1):5-8.
doi: 10.3321/j.issn:1672-2043.2002.01.002
[18] 陈倩, 穆环珍, 黄衍初 . 木质素复合肥的研制及其对肥料氮磷有效性的影响. 农业环境科学学报, 2003,22(1):41-43.
[19] 吕耀 . 苏南太湖流域农业非点源污染及农业可持续发展战略. 环境科学动态, 1998(2):1-4.
[20] 熊明彪, 罗茂盛, 田应兵 , 等. 小麦生长期土壤养分与根系活力变化及其相关性研究. 土壤肥料, 2005(3):8-11.
[21] 熊明彪, 胡恒, 田应兵 , 等. 小麦生长期土壤养分与根系活力变化及其相关性研究. 土壤通报, 2005(5):700-703.
[22] 张向前, 曹承富, 陈欢 , 等. 长期定位施肥对砂姜黑土小麦根系性状和根冠比的影响. 麦类作物学报, 2017,37(3):382-389.
[1] 段君君,刘青峰,任春元,于崧,于立河,郭伟,薛盈文,梁海芸. 不同栽培模式与密度对芸豆产量及干物质积累的影响[J]. 作物杂志, 2018, (6): 110–115
[2] 蔡东芳,王建平,张书芬,何俊平,曹金华,文雁成,赵磊,王东国,朱家成. 河南省不同轮作区双低杂交油菜氮磷钾肥的效应研究[J]. 作物杂志, 2018, (6): 130–137
[3] 崔艳妮,詹俊辉,闫鹏起,可文静,宋宁垣,张中南,王留行,黄岩,张静,赵全志. 氮肥不同施用比例对豫南稻区杂交籼稻子粒灌浆特性及产量的影响[J]. 作物杂志, 2018, (6): 103–109
[4] 王乐政,华方静,曹鹏鹏,田艺心,高凤菊. 播期和密度对直立型红小豆产量及相关性状的影响[J]. 作物杂志, 2018, (6): 83–88
[5] 吕伟,文飞,韩俊梅,王若鹏,任果香,刘文萍,乐美旺,孙建. 昆虫授粉对芝麻产量构成因素的影响[J]. 作物杂志, 2018, (6): 124–129
[6] 赵金星,周伟,战英策,历永杰,高洪波,何松榆,张玉先,张明聪. 土壤改良剂对盐化草甸土物理性质及水稻产量的影响[J]. 作物杂志, 2018, (6): 138–143
[7] 时丽冉,白丽荣,吕亚慈,赵明辉,赵凤梧,李会敏. 小麦杂交品种衡9966苗期耐盐性分析[J]. 作物杂志, 2018, (6): 149–153
[8] 吕亮杰,陈希勇,张业伦,刘茜,王莉梅,马乐,李辉. 小麦GASA基因家族生物信息学分析[J]. 作物杂志, 2018, (6): 58–67
[9] 赵鑫,陈少锋,王慧,刘三才,杨修仕,张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 27–32
[10] 王汉霞,单福华,田立平,马巧云,赵昌平,张风廷. 北部冬麦区冬小麦区试品种(系)的稳定性和适应性分析[J]. 作物杂志, 2018, (5): 40–44
[11] 张翔宇,李海,梁海燕,张知,宋晓强,郑敏娜. 不同种植行距与种植密度对黍子生长特性及子实产量的影响[J]. 作物杂志, 2018, (5): 91–96
[12] 吴荣华,庄克章,刘鹏,张春艳. 鲁南地区夏玉米产量对气象因子的响应[J]. 作物杂志, 2018, (5): 104–109
[13] 宿飞飞,张静华,李勇,刘尚武,刘振宇,王绍鹏,万书明,陈曦,高云飞,胡林双,吕典秋. 不同灌溉方式对两个马铃薯品种生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[14] 张瑞栋,曹雄,岳忠孝,梁晓红,刘静,黄敏佳. 氮肥和密度对高粱产量及氮肥利用率的影响[J]. 作物杂志, 2018, (5): 110–115
[15] 安霞,张海军,蒋方山,吕连杰,陈军. 播期播量对不同穗型冬小麦群体及子粒产量的影响[J]. 作物杂志, 2018, (5): 132–136
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!