作物杂志,2018, 第6期: 89–95 doi: 10.16035/j.issn.1001-7283.2018.06.014

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同向日葵品种对镉积累差异性的田间研究

焦玉字1,郭俊娒2,杨俊兴2,李厚恩3,徐铁兵4,叶勇5,周小勇5   

  1. 1 河南省土壤重金属污染监测与修复重点实验室,459000,河南济源
    2 中国科学院地理科学与资源研究所环境修复中心,100101,北京
    3 北京市勘察设计研究院有限公司,100038,北京
    4 河北省环境科学研究院,050051,河北石家庄
    5 北京瑞美德环境修复有限公司,100015,北京
  • 收稿日期:2018-04-11 修回日期:2018-08-28 出版日期:2018-12-15 发布日期:2018-12-06
  • 作者简介:焦玉字,高级工程师,从事重金属污染土壤修复技术研究
  • 基金资助:
    河南省土壤重金属污染监测与修复重点实验室资助开放基金(2017206);国家重点研发计划项目(2018YFD0800600);国家自然科学基金(41771509,41771510,41201312,41271478)

Field Study on Variety Difference of Cadmium Accumulation in Sunflower (Helianthus annuus L.)

Jiao Yuzi1,Guo Junmei2,Yang Junxing2,Li Houen3,Xu Tiebing4,Ye Yong5,Zhou Xiaoyong5   

  1. 1 Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province, Jiyuan 459000, Henan, China
    2 Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3 Beijing Engineering Research Center of Environmental Geotechnology, Beijing 100038, China
    4 Heibei Provincial Academy of Environmental Sciences, Shijiazhuang 050051, Hebei, China
    5 Beijing Remediation Environmental Restoration Co., Ltd., Beijing 100015, China
  • Received:2018-04-11 Revised:2018-08-28 Online:2018-12-15 Published:2018-12-06

摘要:

为筛选出富集Cd能力较强的向日葵品种,本研究采用田间原位试验,在北方典型Cd污染农田土壤(含Cd 2.22mg/kg)上,研究了28个不同向日葵品种的生长响应和富集Cd能力的差异。结果表明,不同向日葵品种地上部生物量在1 101.38~12 511.13kg/hm 2,地上部Cd含量在1.68~19.25mg/kg,生物富集系数(BCF)在0.76~8.67,地上部Cd提取量在4.17~114.20g/hm 2,均表现出较大差异。通过对向日葵地上部Cd含量的聚类分析可将28个向日葵品种分为3类,并筛选出G3、G1、Y1、G8、G12、G4、G6等品种为高富集Cd型向日葵品种。对向日葵地上部Cd提取量的分析结果表明,Y3、G24和G3品种地上部Cd提取量均达100g/hm 2以上,是修复Cd污染农田土壤较合适的品种。

关键词: 镉, 向日葵, 品种, 植物修复

Abstract:

A field experiment was carried out to study the variety difference of growth response and Cd accumulation in 28 cultivars of sunflower (Helianthus annuus L.) in typical Cd-contaminated farmland soil with 2.22mg/kg Cd in Northern China, which aimed to screen sunflower cultivars with high accumulation of Cd. The results showed that significant differences were observed among 28 cultivars of sunflower, with the shoot biomasses ranged from 1 101.38kg/hm 2-12 511.13kg/hm 2, the shoot Cd concentrations ranged from 1.68mg/kg-19.25mg/kg, the bioconcentration factor ranged from 0.76-8.67, and the uptake amount of Cd ranged from 4.17g/hm 2-114.20g/hm 2.According to the cluster analysis of Cd concentration in sunflower, 28 cultivars of sunflower were divided into 3 categories in which the G3, G1, Y1, G8, G12, G4 and G6 cultivars were defined as high accumulation capacity cultivars. The analysis of Cd uptake in shoot of sunflower suggested that Y3, G24 and G3 cultivars could accumulated more than 100g/hm 2 Cd in shoot, which were suitable for applying in phytoremediation of Cd-contaminated soil.

Key words: Cadmium, Sunflower, Cultivar, Phytoremediation

图1

不同品种向日葵地上部生物量"

表1

不同品种向日葵地上部Cd含量"

生育期Growth stage 观赏葵Ornamental sunflower 油葵Oil sunflower
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 Y1 Y2 Y3 Y4
现蕾期
Squaring stage
5.58 6.76 6.31 3.49 2.20 4.11 4.30 3.72 3.96 3.72 1.15 6.13 3.76 2.49 4.01 3.28 6.29 2.54 1.86 3.15 3.05 5.34 1.35 2.19 3.25 3.85 4.13 4.61
成熟期
Maturation stage
17.96 10.50 19.25 13.95 12.35 13.82 11.17 15.18 10.75 9.37 9.14 14.46 12.48 9.51 9.19 8.62 9.47 6.10 6.22 10.39 8.22 9.82 1.69 8.80 15.71 8.88 11.82 12.53

图2

不同品种向日葵Cd富集系数"

图3

不同品种向日葵Cd富集能力的聚类分析"

图4

不同品种向日葵地上部Cd提取量"

[1] Lai H Y, Su S W, Guo H Y , et al. Heavy metals contaminated soils and phytoremediation strategies in Taiwan. Soil Contamination, 2011,6:107-126.
[2] Guo J, Lei M, Yang J , et al. Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecological Engineering, 2017,106:409-414.
doi: 10.1016/j.ecoleng.2017.04.069
[3] Khan A G, Kuek C, Chaudhry T M , et al. Role of plants,mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000,41(1-2):197-207.
doi: 10.1016/S0045-6535(99)00412-9 pmid: 10819202
[4] Mcgrath S P, Lombi E, Gray C W , et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006,141(1):115-125.
doi: 10.1016/j.envpol.2005.08.022 pmid: 16202493
[5] Ghosh M, Singh S P . A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 2005,133(2):365-371.
doi: 10.1016/j.envpol.2004.05.015 pmid: 15519467
[6] Sheng X, Sun L, Huang Z , et al. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria:implications for energy plant biomass production and phytoremediation. Journal of Environmental Management, 2012,103:58-64.
doi: 10.1016/j.jenvman.2012.02.030 pmid: 22459071
[7] Meers E, Ruttens A, Hopgood M , et al. Potential of Brassic rapa,Cannabis sativa,Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 2005,61(4):561-572.
doi: 10.1016/j.chemosphere.2005.02.026 pmid: 16202810
[8] 张晗芝 . 蓖麻对中低度镉污染农田的修复机理研究. 北京:中国科学院大学, 2014.
[9] Riva G, Calzoni J . Standardisation of vegetable oils. Italian Journal of Agronomy, 2004,8(1):9-15.
[10] Adesodun J K, Atayese M O, Agbaje T A , et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air & Soil Pollution, 2010,207(1-4):195-201.
doi: 10.1007/s11270-009-0128-3
[11] Madejón P, Murillo J M, Marañón T , et al. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Science of the Total Environment, 2003,307(1-3):239-257.
doi: 10.1016/S0048-9697(02)00609-5 pmid: 12711438
[12] Lin J, Jiang W, Liu D C . Accumulation of copper by roots,hypocotyls,cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresource Technology, 2003,86(2):151-155.
doi: 10.1016/S0960-8524(02)00152-9 pmid: 12653280
[13] Stoica P, Viberg M . Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environmental & Experimental Botany, 2015,109(12):45-53.
doi: 10.1016/j.envexpbot.2014.07.020
[14] 赵岩, 黄运新, 秦云 , 等. 植物修复土壤重金属污染的研究进展. 湖北林业科技, 2016,45(1):40-43.
[15] 刘戈宇, 柴团耀, 孙涛 . 超富集植物遏蓝菜对重金属吸收、运输和累积的机制. 生物工程学报, 2010,26(5):561-568.
[16] Yang X, Long X, Ye H , et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant & Soil, 2004,259(1-2):181-189.
[17] Jiang J P, Wu L H, Na L , et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 2010,46(1):18-26.
doi: 10.1016/j.ejsobi.2009.10.001
[18] 郭智 . 超富集植物龙葵(Solanum nigrum L.)对镉胁迫的生理响应机制研究. 上海:上海交通大学, 2009.
[19] Liu W, Shu W, Lan C . Viola baoshanensis,a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 2004,49(1):29-32.
doi: 10.1007/BF02901739
[20] Sun Y, Zhou Q, Wang L , et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 2009,161(2-3):808-814.
doi: 10.1016/j.jhazmat.2008.04.030 pmid: 18513866
[21] Keller C, Hammer D . Alternatives for Phytoextraction:Biomass Plants versus Hyperaccumulators. Geophysical Research Abstracts, 7(03285), 2005.
[22] 聂发辉 . 关于超富集植物的新理解. 生态环境学报, 2005,14(1):136-138.
doi: 10.3969/j.issn.1674-5906.2005.01.029
[23] Linger P, Müssig J, Fischer H , et al. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil:fibre quality and phytoremediation potential. Industrial Crops & Products, 2002,16(1):33-42.
doi: 10.1016/S0926-6690(02)00005-5
[24] Bonanno G, Cirelli G L, Toscano A , et al. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands:Potential applications in agriculture and forestry?. Science of the Total Environment, 2013,452(5):349-354.
doi: 10.1016/j.scitotenv.2013.02.048 pmid: 23534998
[25] Huang H G, Ning Y, Wang L J , et al. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresource Technology, 2011,102(23):11034-11038.
doi: 10.1016/j.biortech.2011.09.067 pmid: 21993327
[26] 余海波, 宋静, 骆永明 , 等. 典型重金属污染农田能源植物示范种植研究. 环境监测管理与技术, 2011,23(3):71-76.
[27] 丁传雨, 郑远, 任学敏 , 等. 能源植物修复土壤镉污染过程中细菌群落分析. 环境科学学报, 2016,36(8):3009-3016.
doi: 10.13671/j.hjkxxb.2015.0729
[28] 李思亮, 李娜, 徐礼生 , 等. 不同生境下锌镉在伴矿景天不同叶龄叶中的富集与分布特征. 土壤, 2010,42(32):153446-153452.
[29] 张奕斌 . 东南景天根系分泌物组成和特性研究. 杭州:浙江大学. 2014.
[30] 唐皓 . 水稻镉高积累材料镉积累及耐性特征研究. 成都:四川农业大学, 2016.
[31] 林立金, 马倩倩, 石军 , 等. 花卉植物硫华菊的镉积累特性研究. 水土保持学报, 2016,30(3):141-146.
doi: 10.13870/j.cnki.stbcxb.2016.03.025
[32] Huang J, Yang Z, Li J , et al. Cadmium accumulation characteristics of floricultural plant Cosmos bipinnata. Chemistry and Ecology, 2017,33(8):1-10.
doi: 10.1080/02757540.2016.1246544
[33] Wei S, Wang S, Zhou Q , et al. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments. Journal of Hazardous Materials, 2010,181(1):480-484.
doi: 10.1016/j.jhazmat.2010.05.038 pmid: 20570438
[34] Dai H, Wei S, Twardowska I , et al. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environmental Science and Pollution Research, 2017,24(29):23161-23167.
doi: 10.1007/s11356-017-9962-9 pmid: 28828736
[35] Rivelli A R, Maria S D, Puschenreiter M , et al. Accumulation of cadmium,zinc,and copper by Helianthus annuus L.:Impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 2012,14(4):320-334.
doi: 10.1080/15226514.2011.620649 pmid: 22567714
[36] 陈立, 王丹, 龙婵 , 等. 3种螯合剂对向日葵修复镉污染土壤的影响. 环境科学与技术, 2017(11):22-29.
[37] Melo E E, Costa E T, Guilherme L R , et al. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 2009,168(1):479-483.
doi: 10.1016/j.jhazmat.2009.02.048 pmid: 19304379
[38] 范洪黎, 周卫 . 镉超富集苋菜品种(Amaranthus mangostanus L.)的筛选. 中国农业科学, 2009,42(4):1316-1324.
doi: 10.3864/j.issn.0578-1752.2009.04.023
[39] Zhuang P, Yang Q, Wang H , et al. Phytoextraction of heavy metals by eight plant species in the field. Water,Air, and Soil Pollution, 2007,184(1-4):235-242.
doi: 10.1007/s11270-007-9412-2
[40] 聂惠, 安玉麟, 李素萍 . 向日葵对重金属胁迫反应及其植物修复的研究进展. 黑龙江农业科学, 2010(9):88-91.
[41] 马灏 . 蓖麻、向日葵对Cd和Zn污染场地的原位修复试验研究. 上海:上海大学, 2015.
[42] 肖璇 . 油菜和向日葵修复Pb污染土壤的研究. 杨凌:西北农林科技大学, 2009.
[43] 王学锋, 崔倩 . EDTA、柠檬酸对向日葵吸收重金属Cd-Ni的影响// 全国农业环境科学学术研讨会. 2007.
[44] Liphadzi M S, Kirkham M B, Mankin K R , et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant & Soil, 2003,257(1):171-182.
doi: 10.1023/A:1026294830323
[1] 马孟莉,郑云,周晓梅,张婷婷,张晓倩,卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[2] 赵鑫,陈少锋,王慧,刘三才,杨修仕,张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 27–32
[3] 苏桂华,李春雷,苏义臣. 吉林省22份主推玉米品种区域试验评价[J]. 作物杂志, 2018, (5): 63–70
[4] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79–83
[5] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[6] 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 62–68
[7] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8–12
[8] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42–47
[9] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[10] 曹玉巧,聂庆凯,高云,许自成黄五星,. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 15–24
[11] 王克如,李少昆,王延波,赵海岩,沈玉忠,蔡丹丹,肖万欣,姜文野,黄兆福,翟立超,李璐璐,谢瑞芝,侯鹏,明博. 辽宁中部适宜机械粒收玉米品种的筛选[J]. 作物杂志, 2018, (3): 97–102
[12] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[13] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[14] 姜丽娜,岳影,李金娜,张雅雯,朱娅林,李春喜. 施氮量对小麦花后氮素分配及氮素利用的影响[J]. 作物杂志, 2018, (2): 80–86
[15] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!