作物杂志,2019, 第2期: 84–89 doi: 10.16035/j.issn.1001-7283.2019.02.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

基于不同烟草类型基因组重测序的烟草SSR标记的开发和应用

耿歆淇1,杨惠娟1,秦艳青2,杨兴有2,赵世民3,史宏志1   

  1. 1 河南农业大学烟草学院/国家烟草栽培生理生化基地,450002,河南郑州
    2 四川省烟草公司,610000,四川成都
    3 河南省烟草公司洛阳市公司,471026,河南洛阳
  • 收稿日期:2018-09-29 修回日期:2018-12-18 出版日期:2019-04-15 发布日期:2019-04-12
  • 通讯作者: 史宏志
  • 基金资助:
    降低雪茄烟叶TSNAs关键技术研究及应用(SCYC201915);烤烟新品系LY1306配套栽培技术研究及应用(LYKJ201507)

Development and Application of Tobacco SSR Markers Based on Genome Re-Sequencing of Different Tobacco Types

Xinqi Geng1,Huijuan Yang1,Yanqing Qin2,Xingyou Yang2,Shimin Zhao3,Hongzhi Shi1   

  1. 1 Tobacco College/National Tobacco Cultivation & Physiology & Biochemistry Research Center, Henan Agricultural University, Zhengzhou 450002, Henan, China;
    2 Sichuan Provincial Tobacco Company, Chengdu 610000, Sichuan, China
    3 Luoyang Branch, Henan Provincial Tobacco Company, Luoyang 471026, Henan, China
  • Received:2018-09-29 Revised:2018-12-18 Online:2019-04-15 Published:2019-04-12
  • Contact: Hongzhi Shi

摘要:

基于基因组重测序的分子标记研究是一种新的方法。本研究在普通烟草基因组序列已完全测定的基础上重测序了4个烟草品种(系),包括烤烟类型(LY1306,秦烟96)2个,晒烟类型(Wanmao 3)1个,马里兰烟草类型(Wufeng 1)1个。结合在NCBI中测序并发布的K326和TN90品种的基因组序列,分析了这4个重测序的烟草品种的InDel突变和SNP突变位点,鉴定出7个具有品种多态性的SSR候选位点,其中5个SSR位点可扩增出DNA片段。通过对包括不同烟草类型在内的10个烟草品种进行PCR检测,表明本研究选出的SSR位点可用于烟草品种或烟草类型的分类,其中NW-015889872.1、NW-015854676.1和NW-015890969.1等3个SSR位点可有效区分烤烟、白肋烟和马里兰烟以及晒烟烟草类型。

关键词: 烟草, 重测序, 基因组, SSR标记

Abstract:

The development of molecular markers based on genome re-sequencing is a new method and trend. In this research four tobacco varieties (lines) including two flue-cured tobacco types (LY1306 line, Qinyan 96), one sun-cured tobacco type (Wanmao 3) as well as one Maryland tobacco type (Wufeng 1) were re-sequenced on genomic nucleotide sequences. Combined with the genomic sequence of variety K326, TN90 which have been sequenced and released in NCBI, the InDel sites and SNP sites of these four re-sequenced tobacco varieties (lines) were analyzed. Seven SSR (simple sequence repeats) candidate alleles were identified from the genomic analysis which were supposed to be polymorphism among these varieties (lines). Five of them were confirmed to be applicable after amplifying the fragments from the SSR allele sites, respectively. Verification PCR tests were carried on ten tobacco varieties (lines) including different tobacco types revealed that they could be used to classify the tobacco varieties (lines) or tobacco types. Three of the SSR sites including NW-015889872.1, NW-015854676.1 and NW-015890969.1 were indicated that to be very effective on classification of the tobacco types among flue-cured tobacco, burley tobacco and Maryland tobacco as well as sun-cured tobacco.

Key words: Tobacco, Re-sequencing, Genome, SSR markers

表1

基因组测定序列的质量控制结果"

样本
Sample
原始数据
Raw Reads data
有效数据(×108)
Clean Reads data
有效数据比例(%)
Clean Reads percent
原始碱基量
Raw bases data
有效碱基量
Clean bases data
有效碱基量比例(%)
Clean base data percent
G和C占比(%)
G and C percent
LY1306 974 594 470 8.87 91.01 146189170500
(146.189G)
132816177340
(132.816G)
90.85 38
QY96 985 001 064 9.04 91.79 147750159600
(147.75G)
135428779630
(135.428G)
91.66 38
WF1H 993 136 690 9.13 91.95 148970503500
(148.97G)
136798225077
(136.798G)
91.82 38
M3H 990 035 276 9.17 92.67 148505291400
(148.505G)
137424500354
(137.424G)
92.53 38

表2

样本与参考基因组的质量控制匹配结果"

样本
Sample
有效数据
Clean Reads data
PCR重复比例(%)
PCR duplicate rate
去除PCR重复后数据(×108)
Data after PCR duplication were removed
对比参考基因组的数据(×108)
Compare reference genome data
参考基因组匹配率(%)
Reference genome mapping rate
QY96 904 164 146 16.18 7.58 7.56 99.74
WM3H 917 495 832 15.53 7.75 7.74 99.91
LY1306 887 012 964 14.64 7.57 7.57 99.91
WF1H 913 227 010 15.97 7.67 7.66 99.88

表3

各测序品种SNP检测结果"

样本Sample WF1H WM3H LY1306 QY96 K326 BX
位于基因组上游的突变数The number of mutations in the upstream region 297 482 355 710 352 194 583 404 542 089 364 475
位于基因组下游的突变数The number of mutations in the downstream region 104 695 123 307 123 562 200 044 187 112 126 102
位于基因组区间的突变数The number of mutations in the intergenic region 3 152 030 3 528 347 3 463 461 5 285 151 4 736 983 3 386 957
位于5′端非翻译区域的突变数The number of mutations in the 5′ UTR region 6 916 9 009 8 867 12 127 10 357 8 526
位于3′端非翻译区域的突变数The number of mutations in the 3′ UTR region 9 323 12 474 12 396 17 041 14 327 11 539
位于剪切区域的突变数The number of mutations in the splice region 4 377 5 285 5 334 6 393 5 547 5 146
位于内含子区域的突变数The number of mutations in the intron region 111 300 132 075 133 106 191 130 172 108 134 178
位于外显子区域的突变数The number of mutations in the exon region 79 199 94 325 95 240 113 782 100 511 95 749
总突变数The total mutations 3 765 322 4 260 532 4 194 160 6 409 072 5 769 034 4 132 672

表4

各测序品种InDeL检测结果"

样本Sample WF1H WM3H LY1306 QY96 K326 BX
位于基因组上游的突变数The number of mutations in the upstream region 32 016 44 902 41 378 50 940 85 775 69 880
位于基因组下游的突变数The number of mutations in the downstream region 9 836 13 438 12 432 15 352 25 873 20 177
位于基因组区间的突变数The number of mutations in the intergenic region 179 646 226 119 212 089 250 865 437 125 295 984
位于5′端非翻译区域的突变数The number of mutations in the 5′ UTR region 1 334 2 029 1 854 2 299 3 488 3 456
位于3′端非翻译区域的突变数The number of mutations in the 3′ UTR region 1 104 1 604 1 405 1 998 2 968 2 241
位于剪切区域的突变数The number of mutations in the splice region 662 812 749 874 1 081 931
位于内含子区域的突变数The number of mutations in the intron region 12 614 16 880 15 448 19 796 32 146 24 199
位于外显子区域的突变数The number of mutations in the exon region 2 059 2 641 2 450 3 045 4 706 3 468
总突变数The total mutations 239 271 308 425 287 805 345 169 593 162 420 336

图1

全基因组SNP和InDeL突变位点分布情况"

图2

测序样本系统进化分析结果"

表5

基于基因组序列分析SSR多态性位点"

突变位点所在染色体编号
The chromosome number
of the mutation site
突变位点所在染色体上位置
The position of mutation
site on the chromosome
突变位点左端染色体编号
The left end chromosome
number of the mutation site
突变位点右端染色体编号
The right end chromosome
number of the mutation site
NW015795276.1 14233 >NW015795276.1:14032-14232 >NW015795276.1:14233-14433
NW015854676.1 34338 >NW015854676.1:34137-34337 >NW015854676.1:34338-34538
NW015889872.1 10709 >NW015889872.1:10508-10708 >NW015889872.1:10709-10909
NW015890969.1 7031 >NW015890969.1:6830-7030 >NW015890969.1:7031-7231
NW015894675.1 7242 >NW015894675.1:7041-7241 >NW015894675.1:7242-7442
NW015920095.1 7693 >NW015920095.1:7492-7692 >NW015920095.1:7693-7893
NW015930318.1 14777 >NW015930318.1:14576-14776 >NW015930318.1:14777-14977

图3

PCR预试验电泳"

表6

用于检测不同烟草类型的SSR多态性位点的引物"

编号No. 序列名称Seq. name 正向引物Forward primer (5′→3′) 反向引物Reverse primer (5′→3′)
1 NW015795276.1 AAAGTGCGTGGAAAAAATC AGCAGCAGAAGAAAAAGTG
2 NW015854676.1 ATCAAATCCATGCTCCCAA GACCCCAAGATACCCCAAC
3 NW015889872.1 CAAAAGCAGCAAAAACACA GAGAAATGAACGGAAAGTC
4 NW015890969.1 CTTAACCACAAAACCCACA TTCGTAACAATTATCACCG
5 NW015930318.1 GTGTTCCTCTGACTTCTCT CCTTAATCTCAAATCTCTC

表7

SSR多态性位点对不同烟草类型检测结果"

烟草类型
Tobacco type
品种(系)
Variety
(Line)
NW-015795276.1
(205-A 208-B 214-C 220-D)
NW-015854676.1
(114-A 115-B 116-C 120-D 121-E)
NW-015889872.1
(197-A 198-B 199-C 200-D 201-E 202-F)
NW-015890969.1
(168-A 169-B 170-C 171-D 174-E)
NW-015930318.1
(198-A 225-B 231-C 255-D)
长度Size (bp) 类型Classification 长度Size (bp) 类型Classification 长度Size (bp) 类型Classification 长度Size (bp) 类型Classification 长度Size (bp) 类型Classification
烤烟
Flue-cured tobacco
K326 208 B 121 E 201 E 170 C 198
255
AD
NC89
205 A 121 E 201 E 170 C 198
225
AB
中烟100
Zhongyan 100
205 A 116
121
CE 200 D 170 C 198
255
AD
LY1306 214 C 121 E 198 B 170 C 198
255
AD
QY96 205
208
AB 121 E 201 E 170 C 231
255
CD
晾烟(白肋烟)
Air-cured tobacco
TN90
205
A
116
120
CD 202 F 174 E 198
255
AD
(Burley tobacco)
TN86 205 A 116
120
CD 202 F 174 E 198
225
AB
晾烟(马里兰烟)
Air-cured tobacco
(Maryland tobacco)
WF1H 220 D 114
121
AE 199 C 171 D 198
255
AD
晒烟(雪茄烟)
Sun-cured tobacco
(Cigar filler)
茄芯1
Jiaxin1
205 A 116
120
CD 201 E 169 B 198
255
AD
WM3H 205 A 115
121
BE 198 A 168 A 198
255
AD
[1] 刘齐元, 刘飞虎, 黄海泉 , 等. 烟草胞质雄性不育系与保持系线粒体DNA的RAPD分析. 江西农业大学学报, 2017(6):826-830.
doi: 10.3969/j.issn.1000-2286.2005.06.006
[2] 朴红梅, 王玉民, 刘宪虎 , 等. 简单重复序列的研究与应用. 吉林农业科学, 2017(6):11-15.
doi: 10.3969/j.issn.1003-8701.2004.06.003
[3] 张志敏, 熊国梅, 王慧娟 , 等. 简单重复序列的筛选与应用. 生命的化学, 2017(3):254-257.
doi: 10.3969/j.issn.1000-1336.2004.03.028
[4] 罗玉娣, 李建国 . SSR标记及其在蔬菜育种中的应用. 热带农业科学, 2017(6):68-71.
doi: 10.3969/j.issn.1009-2196.2005.06.018
[5] 杨育峰, 史典义, 王雁楠 , 等. 基于转录组测序数据的甘薯SSR标记开发及群体聚类分析. 分子植物育种, 2018,16(11):3569-3579.
[6] 聂琼, 刘仁祥 . 23份烟草种质遗传多样性的SSR和ISSR标记分析. 西南农业学报, 2011,24(1):15-19.
doi: 10.3969/j.issn.1001-4829.2011.01.004
[7] 陈云, 陈磊, 乐超银 . 马里兰烟SSR分子标记分析. 湖北农业科学, 2014,53(6):1440-1441,1464.
doi: 10.3969/j.issn.0439-8114.2014.06.057
[8] Nicolas S, James N D B,Sonia O ,et al.The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 2014,5:1-9.
doi: 10.1038/ncomms4833 pmid: 4024737
[9] Dai M, Thompson R C, Maher C , et al. NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics, 2010,1(S4):1-9.
doi: 10.1186/1471-2164-11-S4-S7 pmid: 21143816
[10] Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2010,25(5):1754-1760.
[11] Li H, Handsaker B, Wysoker A , et al. The sequence alignment/map (SAM) format and SAMtools. Transplantation Proceedings, 2009,25(16):2078-2079.
doi: 10.1046/j.1440-1665.1999.0178e.x
[1] 林春雨,梁晓宇,赵慧艳,王洋. 黑龙江省主栽大豆品种遗传多样性和群体结构分析[J]. 作物杂志, 2019, (2): 78–83
[2] 闫晶,姬文秀,石贤吉,朱诗苗,李虎林. 镉胁迫对烟草种子萌发和烟苗生长发育的影响[J]. 作物杂志, 2019, (2): 142–149
[3] 陈芳,徐世晓,李晓辉,刘超,周建飞,王袁,田培,杨铁钊. 基于SSR标记的80份烟草种质指纹图谱的构建及遗传多样性分析[J]. 作物杂志, 2019, (1): 22–31
[4] 何俊平,张书芬,王建平,蔡东芳,曹金华,文雁成,胡坤,赵磊,王东国,朱家成. 甘蓝型双低油菜杂交种丰油10号纯度的SSR鉴定[J]. 作物杂志, 2019, (1): 75–80
[5] 王宁,张静,黄进勇,史团省,杜建,岳彩鹏. 外源过氧化氢对烟草花芽分化的影响初探[J]. 作物杂志, 2018, (6): 116–123
[6] 马建辉,张文利,高小龙,张黛静,姜丽娜,翟延玉,邵云,李春喜. 山羊草谷胱甘肽S-转移酶基因家族鉴定及表达分析[J]. 作物杂志, 2018, (5): 54–62
[7] 唐丽媛,李兴河,张素君,王海涛,刘存敬,张香云,张建宏. 陆地棉光合相关性状的QTL定位分析[J]. 作物杂志, 2018, (5): 85–90
[8] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161–166
[9] 张凯伦,陈寿明,殷红,李斌,谢良文,贺帆. 外源一氧化氮对盐胁迫下烟草幼苗生理及抗氧化性的影响[J]. 作物杂志, 2018, (3): 123–128
[10] 李良木,范艺宽,许自成. 烟草钼素营养研究进展[J]. 作物杂志, 2017, (6): 12–16
[11] 刘丽华,苑少华,冯树英,庞斌双,李宏博,刘阳娜,张立平,赵昌平. 小麦F型雄性不育系和恢复系SSR指纹图谱构建及遗传差异分析[J]. 作物杂志, 2017, (6): 30–36
[12] 高志勇,谢恒星,王志平,刘史力. 植物突变体库的作用及构建研究进展[J]. 作物杂志, 2016, (6): 16–19
[13] 刘丽华,庞斌双,李宏博,刘阳娜,福德平,王娜,赵昌平. 2009-2015年北京市冬小麦区域试验品系的DNA指纹分析[J]. 作物杂志, 2016, (5): 13–18
[14] 李伟,张静,刘浩,闫辉,王超. 优化烟叶结构对红大上部烟叶质量和致香成分的影响[J]. 作物杂志, 2016, (5): 135–140
[15] 代园凤, 龙友华, 喻会平, 等. 不同诱抗剂对烟草马铃薯Y病毒病和气候斑点病的防效及植株性状的影响[J]. 作物杂志, 2015, (6): 146–149
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[2] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48 –52 .
[3] 黄少辉,杨云马,刘克桐,杨军芳,邢素丽,孙彦铭,贾良良. 不同施肥方式对河北省小麦产量及肥料贡献率的影响[J]. 作物杂志, 2018, (1): 113 –117 .
[4] 宋旭东, 张桂香, 张振刚, 等. 高粱杂交种株型性状与产量的遗传相关和通径分析[J]. 作物杂志, 2002, (3): 15 –17 .
[5] 李耀燕,:裴艳艳,:黄珊艳,:张英燕,:韦松基,:谢阳姣,:周琼. 瑶药肿瘤藤(星毛冠盖藤)的生药学研究[J]. 作物杂志, 2018, (1): 61 –65 .
[6] 冯保荣, 耿林荣. 旱地小麦地膜覆盖穴播栽培技术[J]. 作物杂志, 2000, (5): 30 –31 .
[7] 张志雄, 向耀武, 张安中, 等. 杂交水稻Ⅱ优802的选育及栽培技术[J]. 作物杂志, 1997, (2): 21 –22 .
[8] 金水. 关于发展我国大豆生产的建议[J]. 作物杂志, 1990, (1): 9 .
[9] 彭怀远. 来安茭白的栽培点要[J]. 作物杂志, 1995, (3): 37 .
[10] 王爱文. 小麦玉米带田一季亩产吨粮田栽培技术[J]. 作物杂志, 1990, (2): 8 –9 .