作物杂志,2019, 第4期: 183–190 doi: 10.16035/j.issn.1001-7283.2019.04.028

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

谷子角质合成基因对干旱胁迫的响应

岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰   

  1. 山西农业大学农学院,030801,山西晋中
  • 收稿日期:2019-03-25 修回日期:2019-06-13 出版日期:2019-08-15 发布日期:2019-08-06
  • 通讯作者: 郭平毅,郭杰
  • 作者简介:岳琳祺,在读硕士,主要从事谷子遗传育种研究
  • 基金资助:
    山西省重点研发计划项目(201803D221019-5,2015-TN-09)

Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress

Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie   

  1. College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2019-03-25 Revised:2019-06-13 Online:2019-08-15 Published:2019-08-06
  • Contact: Pingyi Guo,Jie Guo

摘要:

干旱是影响谷子产量的重要因素,以抗旱性强的谷子品种赤谷16(M79)及其母本赤谷10号(E1),父本承谷8号(H1)作为研究材料,采用苗期自然干旱处理并设置对照,在干旱处理第6天(土壤水分含量约为20%)时取叶片进行转录组测序。用ExPASY分析基因的理化性质,GSDS 2.0分析基因结构,MAGA 7.0构建系统进化树,TMHMM Server v. 2.0预测跨膜结构域,SOPMA预测蛋白的二级结构。结果显示8个谷子角质合成基因编码的蛋白均为亲水性蛋白,且均为酸性;经干旱胁迫处理之后,M79、E1和H1中8个基因的表达变化趋势有所不同,Seita.8G128800和Seita.7G197000表达明显上调;8个基因中有4个基因与玉米的基因具有同源性,有3个基因与水稻的基因具有同源性,编码蛋白部分有跨膜结构域。角质合成基因在谷子响应干旱胁迫过程中发挥作用,其调控机理较为复杂。本研究的结果为进一步探讨谷子角质与抗旱的关系提供了一定理论依据。

关键词: 谷子, 角质, 抗旱, 生物信息学分析

Abstract:

Drought is an important influence factor on the yield of foxtail millet. The drought-resistant foxtail millet variety Chigu 16 (M79) and its female parent Chigu 10 (E1) and male parent Chenggu 8 (H1) were used as test materials in this study. Natural drought treatment at the seedling stage was adopted and a control was set up. Leaves were taken off on the 6th day of drought treatment (soil moisture content was about 20%) for transcriptome sequencing. The physiochemical properties of genes were analyzed on ExPASY, and gene structures were detected on GSDS 2.0. A phylogenetic tree was constructed on MAGA 7.0, the transmembrane domain was predicted on TMHMM Server v. 2.0 and the secondary structure of proteins was predicted using SOPMA. It was found that the proteins encoded by the 8 cutin synthetic genes of foxtail millets were all hydrophilic, and the 8 genes were all acidic. After the drought stress treatment, the expressions of the 8 genes changed in different trends among M79, E1 and H1, and Seita.8G128800 and Seita.7G197000 were significantly upregulated. Four of the eight genes were homologous with corn genes, three of the eight genes were homologous with rice genes, and a part of coding proteins had a transmembrane domain. The cutin synthetic genes play a role in the drought response of foxtail millet, but their regulation mechanism is complex. Our findings provide theoretically underlie for further exploration into the relationship between foxtail millet cutin and drought resistance.

Key words: Foxtail millet, Cutin, Drought resistance, Bioinformatics analysis

图1

谷子角质合成基因结构"

图2

谷子角质合成基因所编码蛋白的亲水性和疏水性分析"

表1

谷子角质合成基因的基本信息"

基因名称
Gene name
基因长度(bp)
Length of gene
CDS长度(bp)
Length of CDS
染色体
Chromosome
氨基酸数目
Number of amino acids
等电点
PI
分子量(Da)
Molecular weight
Seita.1G219200 2 276 1 590 1 529 4.83 187 041.49
Seita.8G128800 5 998 1 365 8 454 4.64 499 484.30
Seita.7G197000 1 629 1 629 7 542 4.86 134 851.34
Seita.1G237600 6 547 1 863 1 620 4.67 545 565.01
Seita.2G306800 3 599 1 509 2 502 4.83 299 516.29
Seita.6G138200 4 194 1 755 6 584 4.76 348 222.58
Seita.1G362700 3 031 1 881 1 626 4.75 253 210.31
Seita.6G244000 4 219 1 494 6 497 4.76 351 628.77

图3

干旱处理后M79、H1和E1角质合成基因差异表达聚类热图"

图4

谷子角质合成基因进化树"

图5

谷子角质合成基因的跨膜结构域预测"

表2

谷子角质合成基因蛋白二级结构预测"

蛋白名称
Protein name
α螺旋
Alpha helix
β转角
Beta turn
无规则卷曲
Random coil
延伸链
Extended strand
Seita.1G219200 51.04 9.26 13.80 25.90
Seita.8G128800 40.62 9.27 31.35 18.76
Seita.7G197000 45.57 11.99 26.01 16.42
Seita.2G306800 50.60 7.97 24.90 16.53
Seita.6G138200 27.05 12.16 35.45 25.34
Seita.1G362700 45.05 7.19 29.39 18.37
Seita.6G244000 43.86 7.65 28.37 20.12
Seita.1G237600 42.26 8.71 28.23 20.81
[1] 陈雪娇, 张旭东, 韩治中 , 等. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献. 作物学报, 2018,44(7):1055-1066.
[2] Devos K M, Wang Z M, Beales J , et al. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and Applied Genetics, 1998,96(1):63-68.
[3] Jayaraman A, Puranik S, Rai N K , et al. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology, 2008,40(3):241-251.
[4] Qi X, Xie S, Liu Y , et al. Genome-wide annotation of genes and RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molecular Biology, 2013,83(4/5):459-473.
[5] Muthamilarasan M, Bonthala V S, Mishra A K , et al. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Functional & Integrative Genomics, 2014,14(3):531-543.
[6] 窦祎凝, 秦玉海, 闵东红 , 等. 谷子转录因子SiNAC18通过ABA信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017,50(16):3071-3081.
[7] Muthamilarasan M, Khandelwal R, Yadav C B , et al. Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS ONE, 2014,9(10):e109920.
[8] Agarwal P K, Agarwal P, Reddy M K , et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006,25(12):1263-1274.
[9] 杨希文, 胡银岗 . 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究, 2011,29(5):69-74.
[10] 赵晋锋, 余爱丽, 田岗 , 等. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013,39(2):360-367.
doi: 10.3724/SP.J.1006.2013.00360
[11] Mahajan S, Tuteja N . Cold,salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics, 2005,444(6):139-158.
[12] 曾琼, 刘德春, 刘勇 . 植物角质层蜡质的化学组成研究综述. 生态学报, 2013,33(17):5133-5140.
doi: 10.5846/stxb201205260781
[13] 段瑞君, 王爱东, 陈国雄 . 植物角质层基因研究进展. 植物学报, 2017,52(5):637-651.
[14] 周玲艳, 姜大刚, 李静 , 等. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系. 作物学报, 2012,38(6):1115-1120.
doi: 10.3724/SP.J.1006.2012.01115
[15] 李娜 . 超表达AtNCED3基因对水稻叶片角质层蜡质的影响. 晋中:山西农业大学, 2015.
[16] 王莎 . OsWR2对水稻角质层的影响及下游基因的筛选. 长沙:湖南农业大学, 2017.
[17] Chen X, Goodwin S M, Boroff V L , et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003,15(5):1170-1185.
[18] Seo P J, Lee S B, Suh M C , et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011,23(7):1138-1152.
[19] Shi W, Cheng J, Wen X , et al. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). Peer Journal, 2018,6:e4752.
[20] Bennetzen J L, Schmutz J, Wang H , et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
[21] 尹恒 . 谷子干旱下的转录分析及耐旱基因的发掘. 大连:大连理工大学, 2014.
[22] 余爱丽, 赵晋锋, 王高鸿 , 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析. 作物学报, 2016,42(2):295-302.
doi: 10.3724/SP.J.1006.2016.00295
[23] Aharoni A, Dixit S, Jetter R , et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004,16(9):2463-2480.
[24] Oshima Y, Shikata M, Koyama T , et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Toreniafournieri. Plant Cell, 2013,25(5):1609-1624.
[25] Baker J, Steele C, Leon D . Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Molecular Biology, 1988,11(3):277-291.
[26] Sturaro M . Cloning and characterization of GLOSSY1,a maize gene involved in cuticle membrane and wax production. Plant Physiology, 2005,138(1):478-489.
[27] Nevo E . Consensus maps of cloned plant cuticle genes. Sciences in Cold and Arid Regions, 2010,2(6):465-476.
[28] Samuels L, Kunst L, Jetter R . Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 2008,59(1):683-707.
[1] 李颜方,杜艳伟,张正,王高鸿,赵根有,赵晋锋,余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化[J]. 作物杂志, 2019, (3): 73–79
[2] 刘韶光,赵夏童,宋喜娥,原向阳,董淑琦,郭美俊,郭平毅. 膜间喷施芽前除草剂对谷子安全性及对杂草防效的影响[J]. 作物杂志, 2019, (2): 173–178
[3] 杜艳伟,赵晋锋,王高鸿,李颜方,赵根有,阎晓光. 春播谷子成熟期抗倒伏性研究[J]. 作物杂志, 2019, (1): 141–145
[4] 吴瑞香,杨建春,王利琴,郭秀娟. 应用多元分析法综合评价胡麻材料抗旱适应性[J]. 作物杂志, 2018, (5): 10–16
[5] 王小林,纪晓玲,张盼盼,张雄,张静. 黄土高原旱地谷子品种地上器官干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[6] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
[7] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42–47
[8] 李志华,穆婷婷,刘鑫,李会霞,田岗. 4个谷子不育系主要农艺性状的配合力分析[J]. 作物杂志, 2018, (3): 61–67
[9] 刘晨旦,张泽燕,张耀文. 不同基因型绿豆品种芽期抗旱性鉴定[J]. 作物杂志, 2018, (3): 77–83
[10] 岳茂林,薛蔚荣,张瑞栋,岳忠孝,吕瑞洲,郭鹏燕. 不同行距配置对谷子农艺性状及产量的影响[J]. 作物杂志, 2018, (2): 93–96
[11] 孙冬雪,张爱军. 底施锌肥对谷子抗氧化性及干物质的影响[J]. 作物杂志, 2017, (6): 160–164
[12] 王曙光,史雨刚,史华伟,曹亚萍,孙黛珍. 春小麦光合特性与抗旱性的关系研究[J]. 作物杂志, 2017, (6): 23–29
[13] 李国龙,孙亚卿,邵世勤,张永丰. 甜菜幼苗叶片抗氧化系统对干旱胁迫的响应[J]. 作物杂志, 2017, (5): 73–79
[14] 郝曦煜,王红丹,尹智超,梁杰,尹凤祥,郝建军. PEG胁迫对小豆苗期抗旱生理指标的影响及抗旱鉴定体系建立[J]. 作物杂志, 2017, (4): 134–142
[15] 赵媛媛,张丽莉,石瑛. 马铃薯抗旱种质资源的筛选[J]. 作物杂志, 2017, (4): 72–77
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[4] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[5] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .
[6] 柏文恋,郑毅,肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J]. 作物杂志, 2018, (4): 20 –27 .
[7] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42 –47 .
[8] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48 –52 .
[9] 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 62 –68 .
[10] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95 –101 .