作物杂志,2019, 第6期: 168176 doi: 10.16035/j.issn.1001-7283.2019.06.027
祝菊澧1,2,3,梁静思1,2,3,张佩1,王伟伟1,2,3,林桐司骐1,谢欣娱1,苏瑞1,唐唯1,2,3
Zhu Juli1,2,3,Liang Jingsi1,2,3,Zhang Pei1,Wang Weiwei1,2,3,Lin Tongsiqi1,Xie Xinyu1,Su Rui1,Tang Wei1,2,3
摘要:
马铃薯晚疫病菌(Phytophthora infestans)能侵染多种茄科植物,它引起的马铃薯晚疫病,是马铃薯生产中的第一大病害。为了开发能在田间快速检测马铃薯晚疫病病原的方法,利用P. infestans T30-4基因组测序数据的contig 1.18131,设计qPCR和LAMP引物,优化扩增条件后得到引物的特异性和灵敏度,最后通过检测田间收获薯块,比较形态学传统方法、qPCR及LAMP的差异。特异性检测结果发现,qPCR和LAMP仅在含有P. infestans DNA模板的体系有阳性扩增,在寄主和其他微生物DNA中均无扩增;在优化的条件下,qPCR和LAMP的检测下限可达1×10 -6ng/μL,在有寄主和其他微生物DNA存在的条件下,引物的灵敏度没有显著差异。利用两种快速方法对在大理、丽江及昆明3个地区田间收获薯块上检测发现,qPCR和LAMP方法得到的检出率差异极为不显著(P=0.420),两种快速检测方法和形态学鉴定方法检出率差异极显著(P=0.009)。在大理、丽江及昆明3个地区的薯块中,两种分子检测方法检出率均比形态学方法高。其中,qPCR检测方法比形态学方法分别提高了12.00%、2.00%、8.70%;LAMP检测方法比形态学方法分别提高了11.30%、2.00%、8.70%。
[1] |
Fry W E . Phytophthora infestans:the plant (and R gene) destroyer. Molecular Plant Pathology, 2008,9(3):385-402.
doi: 10.1111/j.1364-3703.2007.00465.x pmid: 18705878 |
[2] |
Fry W E, Birch P R J, Judelson H S ,et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 2015,105(7):966-981.
doi: 10.1094/PHYTO-01-15-0005-FI pmid: 25760519 |
[3] |
Yuen J E, Andersson B . What is the evidence for sexual reproduction of Phytophthora infestans in Europe?. Plant Pathology, 2013,62(3):485-491.
doi: 10.1111/j.1365-3059.2012.02685.x |
[4] |
Dennisa J, Thomas F C . Latent infection of potato seed tubers by Phytophthora infestans during long-term cold storage. Plant Disease, 2009,93(9):940-946.
doi: 10.1094/PDIS-93-9-0940 pmid: 30754539 |
[5] |
Small I M, Joseph L, Fry W E . Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Computers and Electronics in Agriculture, 2015,115:57-65.
doi: 10.1016/j.compag.2015.05.010 |
[6] |
Fall M L, Tremblay D M, Gobeil-Richard M , et al. Infection efficiency of four Phytophthora infestans clonal lineages and DNA-based quantification of sporangia. PLoS ONE, 2015,10(8):e0136312.
doi: 10.1371/journal.pone.0136312 pmid: 26301826 |
[7] |
Trout C L, Ristaino J B, Madritch M , et al. Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Disease, 1997,81(9):1042-1048.
doi: 10.1094/PDIS.1997.81.9.1042 pmid: 30861957 |
[8] |
Ristaino J B, Madritch M, Trout C L , et al. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Applied and Environmental Microbiology, 1998,64(3):948-954.
pmid: 9501434 |
[9] |
Kong P, Hong C X, Richardson P A , et al. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology, 2003,39(3):238-249.
doi: 10.1016/S1087-1845(03)00052-5 |
[10] |
Tooley P W, Bunyard B A, Carras M M , et al. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and Environmental Microbiology, 1997,63(4):1467-1475.
pmid: 9097445 |
[11] |
Hussain T, Sharma S, Singh B P , et al. Detection of latent infection of Phytophthora infestans in potato seed tubers. Potato Journal, 2013,40(2):142-148.
doi: 10.1007/BF02849142 |
[12] |
Judelson H S, Tooley P W . Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology, 2000,90(10):1112-1119.
doi: 10.1094/PHYTO.2000.90.10.1112 pmid: 18944474 |
[13] | Gómez-Alpizar L, Carbone I, Ristaino J B . An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(9):3306-3311. |
[14] |
Llorente B, Bravoalmonacid F, Cvitanich C , et al. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Letters in Applied Microbiology, 2010,51(6):603-610.
doi: 10.1111/j.1472-765X.2010.02942.x pmid: 21039667 |
[15] |
Mehran K, Benjin L, Yue J , et al. Evaluation of different PCR-based assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene. Frontiers in Microbiology, 2017,8:1920.
doi: 10.3389/fmicb.2017.01920 pmid: 29051751 |
[16] |
Hussain S, Lees A K, Duncan J M , et al. Development of a species-specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathology, 2005,54(3):373-382.
doi: 10.1111/ppa.2005.54.issue-3 |
[17] |
Ammour M S, Bilodeau G J, Tremblay D M , et al. Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Disease, 2017,101(7):1269-1277.
doi: 10.1094/PDIS-12-16-1780-RE pmid: 30682973 |
[18] |
Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000,28(12):e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386 |
[19] |
Nagamine K, Watanabe K, Ohtsuka K , et al. Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry, 2001,47(9):1742-1743.
pmid: 11514425 |
[20] |
Martin F N, Abad Z G, Balci Y , et al. Identification and detection of Phytophthora:reviewing our progress,identifying our needs. Plant Disease, 2012,96(8):1080-1103.
doi: 10.1094/PDIS-12-11-1036-FE pmid: 30727075 |
[21] |
Tomlinson J A, Barker I, Boonham N . Faster,simpler,more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 2007,73(12):4040-4047.
doi: 10.1128/AEM.00161-07 pmid: 17449689 |
[22] |
Hansen Z R, Knaus B J, Tabima J F , et al. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen,Phytophthora infestans. Journal of Applied Microbiology, 2016,120(4):1010-1020.
doi: 10.1111/jam.13079 pmid: 26820117 |
[23] |
Chen Y, Roxby R . Characterization of a Phytophthora infestans gene involved in vesicle transport. Gene, 1996,181(1/2):89-94.
doi: 10.1016/s0378-1119(96)00469-6 pmid: 8973313 |
[24] |
Caten C E, Jinks J L . Spontaneous variability of single isolates of Phytophthora infestans. I. cultural variation. Canadian Journal of Botany, 1968,46:329-348.
doi: 10.1139/b68-055 |
[25] |
Álvarez I, Wendel J F . Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 2003,29(3):417-434.
doi: 10.1016/s1055-7903(03)00208-2 pmid: 14615184 |
[26] |
Lane D J . Nucleic acid techniques in bacterial systematics. New York:John Wiley and Sons, 1991.
doi: 10.3760/cma.j.issn.0253-9624.2019.11.011 pmid: 31683400 |
[27] | 魏景超 . 真菌鉴定手册. 上海: 上海科学技术出版社, 1979. |
[28] | Boone D R, Castenholz R W . Bergey′s manual of systematic bacteriology. New York:Springer, 2001. |
[29] |
Kroon L P, Brouwer H, de Cock A W ,et al. The genus Phytophthora anno 2012. Phytopathology, 2012,102(4):348.
doi: 10.1094/PHYTO-01-11-0025 |
[30] |
Blancomeneses M, Ristaino J B . Detection and quantification of Peronospora tabacina using a real-time polymerase chain reaction assay. Plant Disease, 2011,95(6):673-682.
doi: 10.1094/PDIS-05-10-0333 |
[31] |
Diguta C F, Rousseaux S, Weidmann S , et al. Development of a qPCR assay for specific quantification of Botrytis cinereal on grapes. Fems Microbiology Letters, 2010,313(1):81-87.
doi: 10.1111/j.1574-6968.2010.02127.x pmid: 20946385 |
[32] | Spring O, Marco T, Wolf S , et al. PCR-based detection of sunflower white blister rust (Pustula helianthicola C. Rost and Thines) in soil samples and asymptomatic host tissue. Netherlands Journal of Plant Pathology, 2011,131(3):519-527. |
[33] |
Eshraghi L, Anderson J, Aryamanesh N , et al. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomic. Plant Pathology, 2011,60(6):1086-1095.
doi: 10.1111/j.1365-3059.2011.02471.x |
[34] |
Lees A K, Sullivan L, Lynott J S , et al. Development of a quantitative real-time PCR assay for Phytophthora infestans and its applicability to leaf,tuber and soil samples. Plant Pathology, 2012,61(5):867-876.
doi: 10.1111/j.1365-3059.2011.02574.x |
[1] | 周弋力,张亚玲,赵宏森,靳学慧. 黑龙江省主栽水稻品种抗稻瘟病基因的分子检测与分析[J]. 作物杂志, 2019, (3): 172177 |
[2] | 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 3744 |
[3] | 赵欣欣,宋丽荣,权薇竹,曲兴然,王奇. 高温高湿老化处理对不同豆类种子活力及生长能力的影响[J]. 作物杂志, 2017, (5): 168172 |
[4] | 卢艳丽,周洪友,张笑宇. 马铃薯茎尖脱毒方法优化及病毒检测[J]. 作物杂志, 2017, (1): 161167 |
[5] | 郭翠,张维,余桂容,周正富,李亮,冯帅,陈明,王劲. 转G2-EPSPS基因玉米D-3侧翼序列分析与转化体特异性检测方法[J]. 作物杂志, 2016, (1): 6975 |
[6] | 谢传晓, 李新海, 张世煌. 农产品未准人转基因成分“低水平混杂”的概念、成因及对策[J]. 作物杂志, 2015, (3): 14 |
[7] | 李兴欣, 孟义江, 罗婉娇, 等. 基于绿色荧光标记的甘草遗传转化体系的建立[J]. 作物杂志, 2014, (4): 5258 |
[8] | 蒋运斌, 马逾英, 杨枝中, 等. 川白芷种子水溶性内源性萌发抑制物质的初步研究[J]. 作物杂志, 2014, (3): 95100 |
[9] | 刘建伟, 陈晓峰, 刘广富, 郭宗端, 李新柱, 胡兆平, 张亮. 大豆CYP78A5基因组织特异性启动子的克隆及表达分析[J]. 作物杂志, 2014, (1): 5458 |
[10] | 崔少彬. 农杆菌介导OD}EB2B基因转化中薯3号的研究[J]. 作物杂志, 2013, (6): 4649 |
[11] | 邹月利, 陶波. 除草剂氯嘧磺隆在培养基中的提取和检测方法研究[J]. 作物杂志, 2012, (6): 4851 |
[12] | 王淑芳, 马桂珍, 暴增海, 李世东, 陈月, 钱媛媛, 尹璐. 辣椒疫霉菌(Phytophthora capsici)实时荧光定量检测方法的研究[J]. 作物杂志, 2012, (5): 3035 |
[13] | 滕卫丽, 韩英鹏, 赵桂云, 等. 大豆叶黄素的研究进展[J]. 作物杂志, 2012, (1): 912 |
[14] | 李婷婷, 韩岚岚, 赵奎军, 等. 圆盘分割法在转基因大豆抗虫鉴定上的应用[J]. 作物杂志, 2011, (4): 2022 |
[15] | 白月, 才华, 栾凤侠, 等. 多重PCR结合DHPLC方法检测番茄中转基因成分[J]. 作物杂志, 2011, (2): 2831 |
|