作物杂志,2020, 第3期: 7–15 doi: 10.16035/j.issn.1001-7283.2020.03.002

• 专题综述 • 上一篇    下一篇

抗旱基因在小麦抗旱基因工程中的应用进展

段俊枝1, 齐学礼2, 冯丽丽1, 张会芳1, 孙岩1, 燕照玲1, 陈海燕1, 齐红志1, 樊文杰1, 杨翠苹1, 刘毓侠1, 任银玲1, 张甲源1, 李莹3(), 卓文飞1()   

  1. 1河南省农业科学院农业经济与信息研究所,450002,河南郑州
    2河南省农业科学院小麦研究所,450002,河南郑州
    3《河南农业大学学报》编辑部,450002,河南郑州
  • 收稿日期:2019-10-28 修回日期:2019-12-26 出版日期:2020-06-15 发布日期:2020-06-10
  • 通讯作者: 李莹,卓文飞 E-mail:liying1233@163.com;kjcankao@126.com
  • 作者简介:段俊枝,研究方向为作物遗传育种,E-mail: junzhi2004@163.com|齐学礼为共同第一作者,研究方向为作物遗传育种,E-mail: xueliqi888@163.com
  • 基金资助:
    河南省农业科学院优秀青年科技基金(2019YQ29);国家自然科学基金(31701510);国家转基因生物新品种培育重大专项(2016ZX08002005-004)

Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering

Duan Junzhi1, Qi Xueli2, Feng Lili1, Zhang Huifang1, Sun Yan1, Yan Zhaoling1, Chen Haiyan1, Qi Hongzhi1, Fan Wenjie1, Yang Cuiping1, Liu Yuxia1, Ren Yinling1, Zhang Jiayuan1, Li Ying3(), Zhuo Wenfei1()   

  1. 1Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3Editorial Department of Journal of Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2019-10-28 Revised:2019-12-26 Online:2020-06-15 Published:2020-06-10
  • Contact: Ying Li,Wenfei Zhuo E-mail:liying1233@163.com;kjcankao@126.com

摘要:

干旱严重影响小麦的生长发育及产量,小麦抗旱育种是保障小麦生产的重要措施,利用基因工程技术提高小麦抗旱性是优于传统育种的有效途径。抗旱基因主要包括调节基因(蛋白激酶、蛋白酶和转录因子基因)和功能基因。目前,已证实的可提高小麦抗旱性的基因主要为转录因子基因CBF/DREB1、MYB、NAC(NAM、ATAF1、ATAF2和CUC2)、HD-Zip和WRKY等和功能基因LEA蛋白基因、甜菜碱合成酶基因和海藻糖合成酶基因等。本文从转录因子基因和功能基因2个方面概述国内外利用基因工程技术提高小麦抗旱性的研究进展,并对目前存在的问题进行分析,以期为小麦抗旱遗传改良及育种提供参考。

关键词: 小麦, 抗旱性, 基因工程, 转录因子, 功能蛋白

Abstract:

Drought seriously affect the growth and yield of wheat. Drought tolerance breeding is an important measure to ensure wheat production. It is an effective way to improve wheat drought tolerance through genetic engineering technology compared with the conventional breeding methods. The drought tolerance genes include functional genes and regulatory genes which encode protein kinase, protease and transcription factors. At present, the genes proved to improve wheat drought tolerance are mainly transcription factor genes encoding CBF/DREB1, MYB, NAC (NAM, ATAF1, ATAF2 and CUC2), HD-Zip and WRKY and functional genes encoding LEA, betaine synthetase and trehalose synthase. This paper comprehensively review the progress on improvement of wheat drought tolerance by genetic engineering of above two classes of gene and analyze some problems in this field at present with the objective to provide reference for drought tolerance genetic improvement and breeding.

Key words: Wheat, Drought tolerance, Genetic engineering, Transcription factor, Functional protein

表1

已报道的提高小麦抗旱性的转录因子基因及其作用机理、效果"

基因家族
Gene
family
基因名称
Gene name
来源
Resource
作用机理
Function mechanism
抗旱效果
Drought-resistant
effect
超表达形式及负面效应
Overexpression type and
negative effect
AP2/ERF DREB1A[7] 拟南芥 增加根数 存活率提高 胁迫诱导表达;无
DREB[8] 拟南芥 提高叶片脯氨酸含量 存活率提高 胁迫诱导表达;无
DREB1B[9,10] 拟南芥 提高叶片脯氨酸含量、叶绿素含量、相对含水量和光合速率 存活率提高,部分株系产量提高 胁迫诱导表达;无
DREB[11] 大豆 提高可溶性糖含量 存活率提高 组成型表达;胁迫诱导表达,无
DREB[12] 棉花 提高可溶性糖含量 存活率提高 组成型表达;胁迫诱导表达,无
DREB2、DREB3[13] 小麦 降低气孔导度,上调其他10个CBF/DREB基因及LEACOR
(cold regulated)和DHN(dehydrin)等胁迫相关基因表达量
存活率提高 组成型表达;生长缓慢,开花时间推迟,产量降低;胁迫诱导表达,无
ERF3[14] 小麦 显著增加叶片脯氨酸和叶绿素含量,显著降低H2O2含量和气孔导度,显著提高一些胁迫相关基因的表达量,包括POX2(peroxidase 2)、OxOx2(oxalate oxidase 2)、BG3(beta-glucosidases 3)、LEA3、GST6(glutathione s-transferase
6)、DHN(dehydrin)、RAB18(ABA-responsive protein 18)、SDR(short-chain dehydrogenase/reductase)、TIP2
(tonoplast intrinsic protein 2)和Chit1(chitinase)等
存活率提高 组成型表达;无
ERF1-V[15] 簇毛麦 显著提高叶片叶绿素含量、过氧化物酶(POD)和超氧化物酶(SOD)活性,显著降低丙二醛(MDA)含量,显著上调编码POD和SOD等基因的表达 存活率提高 组成型表达;无
SHN1[16] 小麦 降低叶片的气孔密度和失水率,增加表皮蜡质中的烷烃含量,调控启动子区域含有DRE、GCC-box和CRT元件的胁迫相关基因的表达量 存活率提高 组成型表达;无
NAC SNAC1[17] 水稻 提高叶片水分和叶绿素含量及胁迫相关基因SPS(sucrose phosphate synthase)、PI3K(1-phosphatidylinositol-3-phosphate 5-kinase)、PP2C3(type 2C protein phosphatases)和RCAR
(regulatory components of ABA receptor)的表达量
存活率提高 组成型表达;无
SNAC1[18] 大麦 提高叶片相对含水量、光合能力和气孔关闭数目,增加分蘖数、穗数、穗粒数和粒重 存活率提高,
产量提高
组成型表达;无
NAC69[19] 小麦 增加根长和根生物量,提高水分利用效率 存活率提高,
产量提高
组成型表达;百粒重和产量降低,胁迫诱导表达,无
BTF3[20] 小麦 提高叶片相对含水量和脯氨酸含量,降低电导率和失水速率 存活率提高 基因沉默;无
HD-Zip HDZipⅠ-5[21] 小麦 存活率提高 组成型表达;植株矮小,生物量降低,开花推迟,产量降低
HDG11[22] 拟南芥 苗期干旱,降低气孔密度和失水速率,提高脯氨酸含量及过氧化氢酶(CAT)和SOD活性;孕穗期干旱,提高光合速率、水分利用效率和激发能效率,降低蒸腾速率,增加分蘖数、穗数和千粒重 存活率提高,
产量提高
组成型表达;无
WRKY WRKY2[23] 小麦 苗期干旱,降低叶片失水速率,增加脯氨酸、可溶性糖和叶绿素含量;抽穗前干旱,增加穗长、穗粒数和生物量 存活率提高,
产量提高
组成型表达;无
[1] Reynolds M, Bonnett D, Chapman S C , et al. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2010,62(2):439-452.
doi: 10.1093/jxb/erq311
[2] Kajla M, Yadav V K, Khokhar J , et al. Increase in wheat production through management of abiotic stresses:A review. Journal of Applied and Natural Science, 2015,7(2):1070-1080.
doi: 10.31018/jans.v7i2.733
[3] Lee S, Choi H, Hwang I , et al. Functional roles of the pepper pathogen-induced bZIP transcription factor,CAbZIP1,in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006,224(5):1209-1225.
doi: 10.1007/s00425-006-0302-4
[4] Hadiarto T, Tran L . Progress studies of drought-responsive genes in rice. Plant Cell Reports, 2010,30(3):297-310.
doi: 10.1007/s00299-010-0956-z
[5] Gaponenko A K, Shulga O A, Mishutkina Y B , et al. Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russian Journal of Genetics, 2018,54(1):27-35.
doi: 10.1134/S1022795418010039
[6] Marco F, Bitrián M, Carrasco P , et al. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology and Biotechnology, 2015,11:579-609.
[7] Pellegrineschi A, Reynolds M, Pacheco M , et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004,47(3):493-500.
doi: 10.1139/g03-140
[8] Wang J W, Yang F P, Chen X Q , et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 2006,33(5):468-476.
doi: 10.1016/S0379-4172(06)60074-7
[9] 王军卫 . 外源脱水应答转录因子DREB1B和CBF1基因在转基因小麦中表达研究. 杨凌:西北农林科技大学, 2005: 42-70.
[10] 荣红颖, 张立全, 杨凤萍 , 等. DREB1B基因在转基因小麦后代的稳定表达. 分子植物育种, 2009,7(3):437-443.
[11] Gao S Q, Xu H J, Cheng X G , et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 2005,50(23):2714-2723.
[12] Gao S Q, Chen M, Xia L Q , et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene,GhDREB,confers enhanced tolerance to drought,high salt,and freezing stresses in transgenic wheat. Plant Cell Reports, 2009,28(2):301-311.
doi: 10.1007/s00299-008-0623-9
[13] Morran S, Eini O, Pyvovarenko T , et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011,9(2):230-249.
doi: 10.1111/j.1467-7652.2010.00547.x
[14] Rong W, Qi L, Wang A Y , et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014,12(4):468-479.
doi: 10.1111/pbi.12153
[15] Xing L P, Di Z, Yang W , et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science, 2017,8:1948.
doi: 10.3389/fpls.2017.01948
[16] Bi H H, Shi J X, Kovalchuk N , et al. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications,improved drought tolerance and no yield penalty under controlled growth conditions. Plant Cell and Environment, 2018,41(11):2549-2566.
doi: 10.1111/pce.v41.11
[17] Saad A S I, Li X, Li H P , et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Science, 2013(203/204):33-40.
[18] Abdallat A M A, Ayad J Y, Elenein J M A , et al. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Moecular Breeding, 2014,33:401-414.
[19] Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013
[20] Kang G Z, Ma H Z, Liu G Q , et al. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Molecular Genetics and Genomics, 2013,288(11):591-599.
doi: 10.1007/s00438-013-0773-5
[21] Yang Y F, Luang S, Harris J , et al. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnology Journal, 2018,16(6):1227-1240.
doi: 10.1111/pbi.2018.16.issue-6
[22] Li L, Zheng M H, Deng G B , et al. Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.). Molecular Breeding, 2016,36(3):1-10.
doi: 10.1007/s11032-015-0425-z
[23] Gao H M, Wang Y F, Xu P , et al. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018,9:997.
doi: 10.3389/fpls.2018.00997
[24] Dubouzet J G, Sakuma Y, Ito Y , et al. OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression. The Plant Journal, 2003,33(4):751-763.
doi: 10.1046/j.1365-313X.2003.01661.x
[25] Ito Y, Katsura K, Maruyama K , et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006,47(1):141-153.
doi: 10.1093/pcp/pci230
[26] Yang S, Tang X F, Ma N N , et al. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. Journal of Plant Physiology, 2011,168(15):1804-1812.
doi: 10.1016/j.jplph.2011.05.017
[27] Tang M J, Liu X F, Deng H P , et al. Over-expression of JcDREB,a putative AP2/EREBF domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas,enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Science, 2011,181(6):623-631.
doi: 10.1016/j.plantsci.2011.06.014
[28] Takuhara Y, Kobayashi M, Suzuki S . Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. Journal of Plant Physiology, 2011,168(9):967-975.
doi: 10.1016/j.jplph.2010.11.008
[29] Agarwal P, Agarwal P K, Joshi A J , et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010,37(2):1125-1135.
doi: 10.1007/s11033-009-9885-8
[30] Gutterson N, Reuber T L . Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004,7(4):465-471.
doi: 10.1016/j.pbi.2004.04.007
[31] Nakano T, Suzuki K, Fujimura T , et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[w] . Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783
[32] Sakuma Y, Liu Q, Dubouzet J G , et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290(3):998-1009.
doi: 10.1006/bbrc.2001.6299
[33] Yamaguchi-shinozaki K, Shinozaki K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress. The Plant Cell, 1994,6(2):251-264.
[34] Zhuang J, Chen J M, Yao Q H , et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 2011,38(2):745-753.
doi: 10.1007/s11033-010-0162-7
[35] Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[36] Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221
[37] Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913
[38] Peng X J, Wang Q Q, Wang Y , et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice. Plant Cell Reports, 2019,38(12):1473-1484.
doi: 10.1007/s00299-019-02458-2
[39] He Z H, Li Z Y, Lu H J , et al. The NAC protein from Tamarix hispida,ThNAC7,confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants, 2019,8(7):221.
doi: 10.3390/plants8070221
[40] Yuan X, Wang H, Cai J T , et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 2019,19(1):278.
doi: 10.1186/s12870-019-1883-y
[41] Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5):394-402.
doi: 10.1016/j.pmpp.2010.06.005
[42] Yong Y, Zhang Y, Lyu YA . Stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019,20(13):3225.
doi: 10.3390/ijms20133225
[43] Guan H, Liu X, Niu F , et al. ONAC72,a NAC-type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 2019,10:890.
doi: 10.3389/fpls.2019.00890
[44] Sivamani E, Bahieldin A, Wraith J M , et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 2000,155(1):1-9.
doi: 10.1016/S0168-9452(99)00247-2
[45] Bahieldin A, Mahfouz H T, Eissa H F , et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum, 2005,123(4):421-427.
doi: 10.1111/ppl.2005.123.issue-4
[46] Chauhan H, Khurana P . Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnology Journal, 2011,9(3):408-417.
doi: 10.1111/j.1467-7652.2010.00561.x
[47] 郭北海, 张艳敏, 李洪杰 , 等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000,42(3):279-283.
[48] 张艳敏, 郭北海, 蒋春志 , 等. 转甜菜碱醛脱氢酶(BADH)基因小麦的耐盐耐旱性. 华北农学报, 2003,18(1):29-32.
doi: 10.3321/j.issn:1000-7091.2003.01.009
[49] Wang G P, Zhen H, Li F , et al. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 2010,4(3):213-222.
doi: 10.1007/s11816-010-0139-y
[50] He C M, Zhang W W, Gao Q , et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica, 2011,177(2):151-167.
doi: 10.1007/s10681-010-0263-3
[51] 杜丽璞, 徐惠君, 叶兴国 , 等. 小麦转TPS基因植株的获得及其初步功能鉴定. 麦类作物学报, 2007,27(3):369-373.
doi: 10.7606/j.issn.1009-1041.2007.03.091
[52] 李永春, 王潇, 陈焕丽 , 等. 转TPSP融合基因小麦植株的获得及抗旱性初步鉴定. 麦类作物学报, 2009,29(2):195-198.
[53] 李金花, 孙敏善, 张春艳 , 等. 转TPSP融合基因小麦的耐旱相关特性. 植物生理学报, 2012,48(1):81-84.
[54] Magwanga R O, Lu P, Kirungu J N , et al. Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. G3 Genes Genomes Genetics, 2018,8(8):2781-2803.
[55] Wang M, Li P, Li C , et al. SiLEA14,a novel atypical LEA protein,confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014,14:290.
doi: 10.1186/s12870-014-0290-7
[56] Yang J, Zhao S, Zhao B , et al. Overexpression of TaLEA3 induces rapid stomatal closure under drought stress in Phellodendron amurense Rupr. Plant Science, 2018,277:100-109.
doi: 10.1016/j.plantsci.2018.09.022
[57] Zhang X, Lu S, Jiang C , et al. RcLEA,a late embryogenesis abundant protein gene isolated from Rosa chinensis,confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Molecular Biology, 2014,85(4):333-347.
doi: 10.1007/s11103-014-0192-y
[58] Luo D, Hou X M, Zhang Y M , et al. CaDHN5,a dehydrin gene from pepper,plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 2019,20(8):1989.
doi: 10.3390/ijms20081989
[59] Vendruscolo E C G, Schuster I, Pileggi M , et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007,164(10):1367-1376.
doi: 10.1016/j.jplph.2007.05.001
[60] Abebe T, Guenzi A C, Martin B , et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 2003,131(4):1748-1755.
doi: 10.1104/pp.102.003616
[61] 刘伟华, 赵秀振, 梁虹 , 等. 枯草杆菌果聚糖蔗糖酶基因转化小麦的研究. 中国农业科学, 2006,39(2):231-236.
[62] 胡梦芸, 李辉, 庞建周 , 等. 过量表达蔗糖转运蛋白基因增强转基因小麦的耐旱性. 中国农业科学, 2015,48(8):1473-1483.
doi: 10.3864/j.issn.0578-1752.2015.08.02
[63] Zang X S, Geng X L, Wang F , et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 2017,17(1):14.
doi: 10.1186/s12870-016-0958-2
[64] Ben-saad R, Ben-ramdhan W, Zouari N , et al. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Moecular Breeding, 2012,30:521-533.
[65] Yu T F, Xu Z S, Guo J K , et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017,7:44050.
doi: 10.1038/srep44050
[1] 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102–108
[2] 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142–148
[3] 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154–160
[4] 刘勇, 刘易科, 朱展望, 田进东, 陈泠, 邹娟, 赵发文, 关健, 高春保, 佟汉文. 小麦有机生产现状与分析——以湖北省南漳县稻茬麦有机产品认证为例[J]. 作物杂志, 2020, (3): 16–21
[5] 朱英杰, 刘富启, 张燕, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才. 不同土壤条件下氮肥处理对小麦产量及品质的影响[J]. 作物杂志, 2020, (3): 184–190
[6] 周子超, 侯建华, 甄子龙, 石慧敏. 152份向日葵重组自交系苗期抗旱性的鉴定与评价[J]. 作物杂志, 2020, (3): 47–52
[7] 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J]. 作物杂志, 2020, (3): 60–65
[8] 陈丹, 普健萍, 伍少云, 周国雁, 隆文杰, 武晓阳, 蔡青. 云南小麦变种分类与地理分布研究[J]. 作物杂志, 2020, (3): 85–91
[9] 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168–171
[10] 陈天鑫,王艳杰,张燕,常旭虹,陶志强,王德梅,杨玉双,朱英杰,刘阿康,石书兵,赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 88–96
[11] 张博,高甜甜,程宏波,李瑞,柴雨葳,李亚伟,柴守玺. 覆盖对旱地冬小麦植株和旗叶水分含量及产量的影响[J]. 作物杂志, 2020, (2): 97–104
[12] 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 1–8
[13] 黄寅玲,雷忠顺,郑涛,索新霞. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020, (1): 130–135
[14] 张永强,齐晓晓,张璐,董慧云,陈传信,赛力汗·赛,薛丽华,陈兴武,雷钧杰. 氮肥运筹对滴灌冬小麦叶片光合特性及产量的影响[J]. 作物杂志, 2020, (1): 141–145
[15] 杨文彪,张慧芋,李莹,祁泽伟,刘凯凯,高志强,孙敏,薛建福. 山西省冬小麦生产潜力时空分布与气象因子分析[J]. 作物杂志, 2020, (1): 161–167
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!