作物杂志,2021, 第1期: 74–81 doi: 10.16035/j.issn.1001-7283.2021.01.011

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响

邓婉月(), 冷秋彦, 杨在君, 余燕, 吴一超()   

  1. 西华师范大学生命科学学院,637002,四川南充
  • 收稿日期:2020-04-15 修回日期:2020-07-02 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 吴一超
  • 作者简介:邓婉月,主要从事药用植物化学研究,E-mail: 1149017145@qq.com
  • 基金资助:
    四川省教育厅重大培育项目(18CZ0019);西华师范大学创新团队项目(CXTD2018-6);西华师范大学博士启动项目(19E045)

Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1"

Deng Wanyue(), Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao()   

  1. College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
  • Received:2020-04-15 Revised:2020-07-02 Online:2021-02-15 Published:2021-02-23
  • Contact: Wu Yichao

摘要:

采用聚乙二醇(PEG-6000)对盆栽“川丹参1号”(CDS-1)模拟长期干旱胁迫,研究干旱胁迫对其生长情况、生理指标及主要活性成分积累的影响。结果表明,干旱胁迫显著降低CDS-1叶片中叶绿素含量,可溶性蛋白、可溶性糖和脯氨酸含量随干旱程度增加呈上升趋势,干旱胁迫下丙二醛含量显著增加,抗氧化酶(SOD、POD和CAT)活性随干旱胁迫程度增加而增加。活性成分分析表明,干旱胁迫后CDS-1根中酚酸和丹参酮类含量均有所上升,迷迭香酸和丹酚酸A含量在PEG-6000浓度为150g/L时最高,分别为CK的145%和175%,丹参酮类含量在PEG-6000浓度为50g/L时最高,增幅超60%。CDS-1在干旱胁迫下表现出适应性变化,轻度和中度干旱胁迫(PEG-6000浓度为50~100g/L)有利于CDS-1中酚酸和丹参酮类活性成分的积累,在实际生产中可通过科学控水保证和提高丹参药材的品质。

关键词: 川丹参1号, 干旱胁迫, 生理指标, HPLC, 活性成分

Abstract:

In this study, polyethylene glycol (PEG-6000) was used to simulate long-term drought stress on potted 'Chuandanshen 1' (CDS-1) for investigating the effects of drought stress on the growth, chlorophyll content, physiological indicators, and the content of main active components. The results were as follows: Drought stress significantly reduced the chlorophyll content in the leaves. Under drought stress, the contents of soluble protein, soluble sugar and proline in leaves showed a significant increasing trend with the increase of drought. MDA content increased significantly under middle and severe drought stress. Antioxidant enzyme activity increased with the increasing of drought stress. HPLC analysis of active components showed that phenolic acid and tanshinone content in the root increased after treating with 50-150g/L of PEG-6000. The content of rosmarinic acid and salvianolic acid A were the highest when treated with 150g/L, which was 145% and 175% of CK. The content of tanshinones was the highest when treated with 50g/L PEG-6000, and increased more than 60% compared with CK. Overall, the results demonstrated that CDS-1 showed adaptive changes under drought stress and had a certain drought-resistant ability. The activity of antioxidant enzyme and the contents of main active components of CDS-1 increased, which improved its antioxidant and disease-prevention ability to adapt the drought environment. Light and middle drought stress (50-100g/L PEG-6000) are beneficial to the accumulation of phenolic acid and tanshinones in CDS-1. In actual production, scientific control of water can be used to ensure and improve the quality of medicinal material CDS-1.

Key words: Chuandanshen 1, Drought stress, Physiological index, HPLC, Active components

表1

不同PEG-6000浓度模拟干旱胁迫处理

PEG浓度
PEG concentration(g/L)
水势梯度
Water potential gradient (MPa)
干旱程度
Degree of drought
0 (CK) 0
50 -0.1 轻度
100 -0.4 中度
150 -0.5 中度
200 -0.7 重度

表2

CDS-1中6种活性成分标准曲线

化合物Compound 回归方程Regression equation 相关系数Correlation coefficient (r) 线性范围Linear range (mg/mL)
迷迭香酸Rosmarinic acid Y=4720.4X+30.738 0.9982 0.0025~0.0625
丹酚酸B Salvianolic acid B Y=13362X+12.023 0.9998 0.0200~0.2000
丹酚酸A Salvianolic acid A Y=8580.5X+41.569 0.9970 0.0025~0.0625
隐丹参酮Cryptotanshinone Y=61908X-3.0334 1 0.0005~0.0125
丹参酮ⅠTanshinone Ⅰ Y=150729X+0.5474 1 0.0005~0.0125
丹参酮ⅡA Tanshinone ⅡA Y=171690X-0.0514 1 0.00037~0.00555

图1

不同浓度PEG-6000模拟干旱胁迫处理下CDS-1的形态

表3

不同浓度PEG-6000模拟干旱胁迫处理下CDS-1叶片的叶绿素含量

PEG-6000浓度
PEG-6000
concentration
(g/L)
叶绿素含量
Chlorophyll content (mg/g)
叶绿素a/b
Chl a/Chl b
Chl a Chl b 合计
Total
0 (CK) 0.88±0.10a 0.49±0.06a 1.37±0.16a 1.82±0.12c
50 0.73±0.04b 0.38±0.02b 1.11±0.06b 1.89±0.09bc
100 0.72±0.04b 0.33±0.03bc 1.05±0.07b 2.15±0.30abc
150 0.70±0.04b 0.31±0.02bc 1.01±0.06b 2.22±0.11ab
200 0.66±0.07b 0.29±0.04c 0.95±0.11b 2.29±0.27a

图2

PEG-6000模拟干旱胁迫对CDS-1叶片中可溶性蛋白、可溶性糖和脯氨酸含量的影响

图3

PEG-6000模拟干旱胁迫对CDS-1叶片中MDA含量,SOD、POD和CAT活性的影响

图4

PEG-6000模拟干旱胁迫下CDS-1中6种活性成分HPLC色谱图 1.迷迭香酸,2.丹酚酸B,3.丹酚酸A,4.隐丹参酮,5.丹参酮Ⅰ,6.丹参酮ⅡA

表4

不同浓度PEG-6000溶液模拟干旱胁迫处理下CDS-1中6种活性成分含量

PEG-6000浓度
PEG-6000 concentration (g/L)
迷迭香酸
Rosmarinic
acid
丹酚酸B
Salvianolic
acid B
丹酚酸A
Salvianolic
acid A
隐丹参酮
Cryptptanshinone
丹参酮Ⅰ
TanshinoneⅠ
丹参酮ⅡA
TanshinoneⅡA
总丹参酮
Total tanshinone
0 (CK) 5.54±0.25c 34.44±1.77a 0.53±0.16b 0.05±0.01c 0.14±0.01b 0.19±0.01c 0.38±0.01b
50 6.00±0.31c 31.60±1.31bc 0.54±0.12b 0.09±0.00a 0.23±0.01a 0.32±0.02a 0.64±0.03a
100 7.64±0.26a 30.00±1.48c 0.58±0.09b 0.07±0.01b 0.24±0.02a 0.28±0.02b 0.59±0.01a
150 8.03±0.36a 34.44±1.12a 0.93±0.17a 0.01±0.00d 0.09±0.00c 0.07±0.01d 0.17±0.01c
200 6.84±0.27b 32.68±0.96ab 0.41±0.09b 0.05±0.01c 0.15±0.03b 0.20±0.02c 0.40±0.05b
[1] 周子超, 侯建华, 甄子龙, 等. 152份向日葵重组自交系苗期抗旱性的鉴定与评价. 作物杂志, 2020(3):47-52.
[2] Hu L X, Wang Z L, Huang B R. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C-3 perennial grass species. Physiologia Plantarum, 2010,139(1):93-106.
doi: 10.1111/j.1399-3054.2010.01350.x pmid: 20070869
[3] 蒲伟凤, 纪展波, 李桂兰, 等. 作物抗旱性鉴定方法研究进展. 河北科技师范学院学报, 2011,25(2):34-39.
[4] Selmar D, Kleinwachter M. Stress enhances the synthesis of secondary plant products:the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology, 2013,54(6):817-826.
doi: 10.1093/pcp/pct054
[5] 王微. 土壤水分条件对丹参生长和化学成分含量的影响、机制及其应用基础. 上海:复旦大学, 2014.
[6] 国家药典委员会. 中华人民共和国药典(2015版,一部). 北京: 中国医药科技出版社, 2015.
[7] Dong Y, Morris-Natschke S L, Lee K H. Biosynthesis,total syntheses,and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Natural Product Reports, 2011,28:529-542.
doi: 10.1039/c0np00035c pmid: 21225077
[8] Jiang Y Y, Wang L, Zhang L, et al. Characterization,antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge. International Journal of Biological Macromlecules, 2014,70:92-99.
[9] Bi L, Yan X, Yang Y, et al. The component formula of Salvia Miltiorrhiza and Panax Ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells. Oncotarget, 2017,8(60):101599-101613.
doi: 10.18632/oncotarget.21354 pmid: 29254189
[10] Gao H, Sun W, Zhao J, et al. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Scientific Reports, 2016,6:33720.
doi: 10.1038/srep33720 pmid: 27666387
[11] Choi H G, Tran P T, Lee J H, et al. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Archires of Pharmacal Research, 2018,41(1):64-70.
[12] Jiang Y, Zhang L, Rupasinghe H P V. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomedicine & Pharmacotherrapy, 2017,85:57-67.
[13] Ali M, Khan T, Fatima K, et al. Selected hepatoprotective herbal medicines:Evidence from ethnomedicinal applications,animal models,and possible mechanism of actions. Phytotherapy Research, 2018,32:199-215.
doi: 10.1002/ptr.5957 pmid: 29047177
[14] Zhao X, Zheng X, Fan T P, et al. A novel drug discovery strategy inspired by traditional medicine philosophies. Science, 2015,347:S38-S40.
[15] 王萌, 张力文, 谢显莉, 等. 丹参新品种‘川丹参1号’. 园艺学报, 2012,39(11):2333-2334.
[16] Wang X, Morris-Natschke S L, Lee K H. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Medicinal Research Reviews, 2007,27(1):133-148.
doi: 10.1002/med.20077 pmid: 16888751
[17] Lin H Y, Lin T S, Wang C S, et al. Rapid determination of bioactive compounds in the different organs of Salvia Miltiorrhiza by UPLC-MS/MS. Journal of Chromatography B, 2019,1104:81-88.
doi: 10.1016/j.jchromb.2018.11.006
[18] 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
[19] 李合生. 现代植物生理学. 4 版. 北京: 高等教育出版社, 2012.
[20] 越世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994(3):207-210.
[21] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[22] 何丽斯, 苏家乐, 刘晓青, 等. 模拟干旱胁迫对高山杜鹃光合生理特性的影响. 苏州科技大学学报(自然科学版), 2011,28(4):62-66.
[23] 贾鑫, 孙窗舒, 李光跃, 等. 干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响. 西北植物学报, 2018,38(3):501-509.
[24] Fan X W, Li F M, Song L, et al. Defense strategy of old and modern spring wheat varieties during soil drying. Plant Physiology, 2009,136:310-323.
[25] 马少薇, 刘果厚, 王蕾, 等. 干旱胁迫对黄柳雌雄扦插苗生长和生理特性的影响. 西北植物学报, 2109,39(7):1250-1258.
[26] 郑清岭, 杨忠仁, 张凤兰, 等. 沙芥属植物活性氧清除系统对干旱胁迫的响应. 西北植物学报, 2018,38(9):1674-1682.
[27] 宋杰, 李树发, 李世峰, 等. 遮阴对高山杜鹃叶片解剖和光合特性的影响. 广西植物, 2019,39(6):802-811.
[28] Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments,morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environmental and Experimental Botany, 2006,55(1/2):183-194.
[29] 王贺正, 沈思涵, 张冬霞, 等. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响. 作物杂志, 2020(2):168-171.
[30] 左小容, 梁宗锁, 田胄, 等. 持续干旱胁迫及复水对丹参幼苗抗氧化酶活性的影响. 西北农业学报, 2011,20(2):110-113.
[31] Hojati M, Modarres-Sanavy S A M, Karimi M, et al. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 2011,33:105-112.
doi: 10.1007/s11738-010-0521-y
[32] 赵亚虹. 蜡梅过氧化物酶体生成蛋白基因CpPEX22的克隆及功能初步分析. 重庆:西南大学, 2013.
[33] 徐贝贝, 刘楠, 任海, 等. 西沙群岛草海桐的抗逆生物学特性. 广西植物, 2018,38(10):1277-1285.
[34] Shi M, Kwok K W, Wu J Y. Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnology and Applied Biochemistry, 2007,46:191-196.
doi: 10.1042/BA20060147 pmid: 17014425
[35] Yang D F, Liang Z S, Liu J L. LC fingerprinting for assessment of the quality of the lipophilic components of Salvia miltiorrhiza. Chromatographia, 2009,69(5/6):555-560.
doi: 10.1365/s10337-008-0918-6
[36] Li G, Yu F, Wang Y, et al. Comparison of the chromatographic fingerprint,multicomponent quantitation and antioxidant activity of Salvia miltiorrhiza Bge. between sweating and nonsweating. Biomedical Chromatography, 2018,32(6):e4203.
doi: 10.1002/bmc.4203 pmid: 29399849
[37] Meim X D, Cao Y F, Che Y Y, et al. Danshen:a phytochemical and pharmacological overview. Chinese Journal of Natural Medicines, 2019,17(1):67-88.
[38] Ożarowski M, Piasecka A, Gryszczyńska A, et al. Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC-MS tools:multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity. Phytochemistry Letters, 2017,20:331-338.
doi: 10.1016/j.phytol.2016.12.001
[1] 申洁, 王玉国, 郭平毅, 原向阳. 腐植酸对干旱胁迫下谷子幼苗叶片抗坏血酸-谷胱甘肽循环的影响[J]. 作物杂志, 2021, (2): 173–177
[2] 韩多红, 王恩军, 张勇, 王红霞, 王艳, 王富. 干旱胁迫下外源亚精胺、甜菜碱对菘蓝种子萌发和幼苗生理特性的影响[J]. 作物杂志, 2021, (1): 118–123
[3] 杨娟, 姜阳明, 周芳, 张军, 罗海登, 田山君. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021, (1): 82–89
[4] 菅立群, 张翼飞, 杨克军, 王玉凤, 陈天宇, 张继卫, 张津松, 李庆, 刘天昊, 肖珊珊, 彭程, 王宝生. 播种至苗期不同阶段低温对玉米幼苗生长及生理抗性的影响[J]. 作物杂志, 2020, (6): 61–68
[5] 杨甜,张永清,董馥慧,马星星,薛小娇. 不同水分条件下不同抗旱性苦荞根系生长规律研究[J]. 作物杂志, 2019, (6): 76–82
[6] 温日宇,刘建霞,张珍华,郭耀东,代旭瑶,姜庆国,樊丽生. 干旱胁迫对不同藜麦种子萌发及生理特性的影响[J]. 作物杂志, 2019, (1): 121–126
[7] 吴瑕,吕德国,杜国栋,杨凤军. 甜樱桃嫁接苗与组培苗枝条抗寒生理差异分析[J]. 作物杂志, 2019, (1): 168–174
[8] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95–101
[9] 张姣,吴奇,周宇飞,王艺陶,张瑞栋,黄瑞冬. 苗期和灌浆期干旱-复水对高粱光合特性和物质生产的影响[J]. 作物杂志, 2018, (3): 148–154
[10] 李国龙,孙亚卿,邵世勤,张永丰. 甜菜幼苗叶片抗氧化系统对干旱胁迫的响应[J]. 作物杂志, 2017, (5): 73–79
[11] 郝曦煜,王红丹,尹智超,梁杰,尹凤祥,郝建军. PEG胁迫对小豆苗期抗旱生理指标的影响及抗旱鉴定体系建立[J]. 作物杂志, 2017, (4): 134–142
[12] 赵媛媛,张丽莉,石瑛. 马铃薯抗旱种质资源的筛选[J]. 作物杂志, 2017, (4): 72–77
[13] 杨宁,赵浡彤,包雨卓,吕岩,彭瞰看,田宇,王军虹,孟婧,苍晶. 外源ABA及其抑制剂氟啶酮对冬小麦分蘖节抗寒指标的影响[J]. 作物杂志, 2017, (4): 117–122
[14] 徐畅,刘景辉,杨彦明,白雪,马斌,张兴隆,孙梦媛,张梦玉. 菌肥与氮磷肥配施对覆膜马铃薯抗旱生理指标及产量的影响[J]. 作物杂志, 2017, (1): 94–99
[15] 王姣,张永清. 干旱胁迫下不同小豆品种根系生长规律研究[J]. 作物杂志, 2016, (6): 112–119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[2] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32 –36 .
[3] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[4] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8 –12 .
[5] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79 –83 .
[6] 张燕,尹翠,曹云娥. 蚯蚓发酵液对果蔬品质的影响[J]. 作物杂志, 2018, (1): 102 –106 .
[7] 黄少辉,杨云马,刘克桐,杨军芳,邢素丽,孙彦铭,贾良良. 不同施肥方式对河北省小麦产量及肥料贡献率的影响[J]. 作物杂志, 2018, (1): 113 –117 .
[8] 杜志敏,杨宇尘,夏原野,宫彦龙,闫志强,徐海. 收获期对北方杂交粳稻和常规粳稻品质的影响[J]. 作物杂志, 2018, (1): 147 –151 .
[9] 郜战宁,冯辉,薛正刚,杨永乾,王树杰,潘正茂. 28个大麦品种(系)主要农艺性状分析[J]. 作物杂志, 2018, (1): 77 –82 .
[10] 朱凯,张飞,柯福来,王艳秋,邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响[J]. 作物杂志, 2018, (1): 83 –87 .