作物杂志,2021, 第3期: 40–45 doi: 10.16035/j.issn.1001-7283.2021.03.006

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

苗期及灌浆期抗Bipolaris sorokiniana叶枯病小麦品种(系)鉴定及相关性分析

李梦钰(), 高闯, 李巧云(), 徐凯歌, 王丝雨, 牛吉山   

  1. 河南农业大学/国家小麦工程技术研究中心,450046,河南郑州
  • 收稿日期:2020-06-23 修回日期:2021-03-04 出版日期:2021-06-15 发布日期:2021-06-22
  • 通讯作者: 李巧云
  • 作者简介:李梦钰,主要从事小麦抗病遗传及分子育种研究,E-mail: untitled6002@163.com
  • 基金资助:
    河南省科技攻关项目(202102110021);“十二五”国家科技支撑计划项目(2015BAD26B01)

Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage

Li Mengyu(), Gao Chuang, Li Qiaoyun(), Xu Kaige, Wang Siyu, Niu Jishan   

  1. Henan Agricultural University/National Engineering Research Centre for Wheat, Zhengzhou 450046, Henan, China
  • Received:2020-06-23 Revised:2021-03-04 Online:2021-06-15 Published:2021-06-22
  • Contact: Li Qiaoyun

摘要:

叶枯病对小麦生产危害严重,麦根腐平脐蠕孢菌(Bipolaris sorokiniana)是小麦叶枯病的主要致病菌。为筛选抗B. sorokiniana叶枯病小麦种质,采用“孢子液喷洒、套袋(罩)保湿”接菌鉴定的方法,于2019-2020年对130个小麦品种(系)进行苗期及灌浆期叶枯病抗性鉴定,同时分析了小麦苗期与灌浆期对B. sorokiniana叶枯病抗性的相关性。结果表明,130个小麦品种(系)中,苗期抗病材料占32.3%,其中高抗与中抗材料分别为1.5%与30.8%,无免疫材料;感病材料占67.7%,其中中感与高感材料分别为20.8%与46.9%;灌浆期抗、感叶枯病材料分别占11.5%与88.5%,无高抗材料;小麦苗期与灌浆期对B. sorokiniana叶枯病抗性呈显著正相关关系(r = 0.72)。此结果为抗B. sorokiniana叶枯病的遗传育种与抗病机理研究提供了优异的种质资源;基于苗期抗性与灌浆期抗性的显著相关性,可以通过室内快速准确的苗期叶枯病抗性鉴定预测大田条件下小麦灌浆期的抗性,节省时间,减轻大田鉴定繁重的工作量,并降低环境因素对鉴定结果的影响。

关键词: 小麦, 叶枯病, 麦根腐平脐蠕孢, 抗性鉴定

Abstract:

Wheat leaf blight is severely harmful to wheat production. Bipolaris sorokiniana is a major pathogen causing this disease. In order to screen the germplasms resistant to leaf blight caused by B.sorokiniana, the method of spraying spore suspension and covering for moisture was used at seedling stage and filling stage of 130 wheat cultivars/lines at the wheat-growing season in 2019-2020 and the correlation of resistance between seedling stage and filling stage were analyzed. The results showed that among 130 wheat cultivars (lines), resistant genotypes were 32.3% at seedling stage, of which high and moderately resistant genotypes were 1.5% and 30.8%, respectively, and had no immune genotype, susceptible germplasm was 67.7% of which moderately and high susceptible genotypes were 20.8% and 46.9%, respectively. The resistant and susceptible cultivars (lines) were 11.5% and 88.5% at filling stage, respectively, and had no high resistant genotype. There was a significant positive correlation between resistances to leaf blight caused by B. sorokiniana at seedling stage and filling stage (r=0.72). The results provide excellent resistant resources for wheat breeding and mechanism study of resistance to leaf blight. The significant correlation between resistances at seedling and filling stage provides promising evidence for evaluating resistance to leaf blight at filling stage through evaluating seedling resistance under artificial inoculation condition in the growth chamber, which is rapid and accurate and can alleviate the heavy workload of resistance identification in the field at filling stage, and reduced the impact of environmental factors on identification results.

Key words: Wheat, Leaf blight, Bipolaris sorokiniana, Resistance identification

表1

130个小麦品种(系)苗期与灌浆期B. sorokiniana叶枯病DLA

品种(系)
Cultivar (line)
苗期
Seedling stage
灌浆期
Filling stage
品种(系)
Cultivar (line)
苗期
Seedling stage
灌浆期
Filling stage
品种(系)
Cultivar(line)
苗期
Seedling stage
灌浆期
Filling stage
新矮早818 25.7 50.8 11-695(LWX) 66.6 60.1 中国春 17.3 44.0
新麦13 16.0 11.2 11-696(LWX) 52.8 54.2 远嫁69 12.6 42.5
石L5206-10 18.2 52.5 SP1777-1-4 66.8 81.7 YN177 20.5 44.0
陕优225 11.7 21.8 郑麦366 68.9 63.8 481/274 65.1 87.5
矮丰66 20.2 32.7 绵资02-12 48.8 67.5 TA 3809/312 44.6 57.5
荷兰大籽 14.4 43.0 11-252(LWX) 75.8 71.3 徐麦9169 16.4 39.3
C50232 16.2 55.5 11-253(LWX) 65.9 69.2 囤麦127 19.6 48.8
豫麦47 21.0 58.8 11-269(LWX) 76.8 87.6 百农107 20.3 55.8
郑2062 10.4 58.0 天02-204 68.9 97.7 辉县红 55.1 76.7
良星99 14.6 25.0 12家2联 60.8 78.4 荆辉1号 61.4 50.4
新麦1817 27.7 25.4 济麦21 44.6 56.7 扬麦5号 52.7 65.0
偃展4110 55.0 75.0 CA0816 40.4 57.4 Chancellor 61.2 62.3
陇麦135 41.4 45.0 国麦0116 55.9 66.7 Yuma 26.5 35.0
百泉41 36.0 78.4 高冬2 33.7 76.3 92R137 47.8 73.8
西农9871-1 52.2 82.3 淮核0308 41.4 75.1 11YC173 23.4 25.8
阜麦936 52.3 66.7 鹤0927 20.1 33.4 抗线虫1-1 55.4 66.3
碧蚂1号 49.0 44.8 单体 20.8 65.0 抗线虫1-4 61.5 55.0
岗01 19.7 30.0 许科316 20.6 58.6 温麦8号 66.8 80.4
川农18 19.8 37.2 驻麦6097 12.9 46.7 温麦10号 79.2 97.5
周19 30.9 60.0 航麦901 66.0 80.2 57048 20.1 68.3
节燕98-7 19.5 35.4 Wheatear 28.1 63.3 65498 24.4 25.0
04ZP16 50.0 63.8 Guomai222 27.4 45.8 鄂麦170 23.1 11.4
10M8 17.1 31.7 BP57-1 26.1 43.8 鄂麦526 27.9 50.0
10M14 47.4 60.5 望水白 56.1 52.8 珍麦3号 76.1 22.9
10M24 8.9 16.3 苏麦3号 45.3 63.8 涡麦66 65.2 37.6
10M31 31.4 67.0 PH691 38.2 60.0 中麦170 16.0 21.0
10M16 22.5 67.5 Tybalt 15.6 28.0 郑麦132 13.5 19.5
10M21 20.8 55.0 丽麦16 60.1 84.4 丰德存麦16 27.9 43.8
10M23 24.7 23.3 济南31 33.3 51.7 CIM-1 36.4 58.3
2101-136 28.8 59.2 品质所材料6 12.5 36.3 CIM-17 40.0 48.3
郑州991 28.9 38.0 宛原白1号 18.9 23.6 秋乐2132 51.8 68.4
国麦2号 75.2 48.5 济程2号 14.0 25.4 郑麦1354 54.6 67.5
CH-1 63.4 84.1 豫优1号 28.9 66.3 中育1526 50.2 73.1
西农979-5 18.4 31.0 石98-7136 60.0 83.8 扶麦368 49.9 64.4
04高春4 59.0 48.0 山农4143 77.7 89.4 瑞华1426 41.1 60.7
山农530070 67.3 70.0 SP1777-6-8 65.1 90.0 浚麦118 28.3 42.2
09X1 24.7 33.5 11-285 48.6 86.5 宁麦13 25.4 45.7
PIC420 52.3 96.6 283 32.3 60.5 浩麦1号 68.6 66.3
G57(LHL) 41.8 39.6 10M18 26.9 35.0 淮麦28 57.7 75.0
11-229(LWX) 11.4 52.8 11-270 69.9 83.3 烟农19 53.9 54.4
11-239(LWX) 36.6 67.5 YN006 29.7 58.8 安农0711 32.5 37.5
11-358(LWX) 36.5 40.0 L01378 28.0 12.8 安农1589 33.2 59.0
11-504(LWX) 59.6 62.5 L661(LPG) 61.8 63.0
11-411(LWX) 62.5 65.0 山农737 29.2 31.0

表2

130个小麦品种(系)在苗期与灌浆期对B. sorokiniana叶枯病的抗性评价

DLA范围
Range of
DLA (%)
抗性评价
Resistance
evaluation
苗期Seedling stage 灌浆期Filling stage
品种(系)数量(占比)
Number of cultivars (lines) (percentage)
平均DLA
Average DLA
品种(系)数量(占比)
Number of cultivars (lines) (percentage)
平均DLA
Average DLA
1.0~10.9 高抗 2(1.5%) 9.7C - -
11.0~25.9 中抗 40(30.8%) 18.6C 15(11.5%) 20.7C
26.0~40.0 中感 27(20.8%) 30.8B* 19(14.6%) 34.8B*
>40.0 高感 61(46.9%) 57.1A* 96(73.9%) 64.1A*

图1

抗、感小麦品种(系)苗期与灌浆期B. sorokiniana叶枯病发病情况 R=抗病,S=感病,Bs与CK分别表示B. sorokiniana与蒸馏水处理(对照)。苗期抗病材料(a)分别为许科316、PIC420、远嫁69、PH691与驻麦6097;感病材料(b)分别为新矮早818、碧蚂1号、望水白、11-253(LWX)与辉县红;灌浆期抗病与感病材料分别为鄂麦170 (c)与西农9871-1 (d)

图2

小麦苗期与灌浆期DLA相关性分析

[1] Gupta P K, Chand R, Vasistha N K , et al. Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathology, 2017,67(3):508-531.
doi: 10.1111/ppa.2018.67.issue-3
[2] Sharma R C, Duveiller E . Spot blotch continues to cause substantial grain yield reductions under resource-limited farming conditions. Journal of Phytopathology, 2006,154(7):482-488.
doi: 10.1111/jph.2006.154.issue-7-8
[3] 刘红彦, 王锡锋, 张忠山 . 河南省小麦叶枯病发生规律研究. 河南农业科学, 1994(8):12-16.
[4] 董燕妮 . 小麦叶枯病发生危害特点及防控措施. 农村经济与科技, 2019,30(13):84-85.
[5] 周玉琴, 宋晓, 金建猛 , 等. 小麦叶枯病的发生动态与防治技术. 农业科技通讯, 2015(8):157-160.
[6] Shideh M, Naser S, Azizollah A , et al. Measuring and modeling crop loss of wheat caused by septoria leaf blotch in seven cultivars and lines in Iran. Journal of Plant Protection Research, 2009,49(3):257-262.
doi: 10.2478/v10045-009-0039-8
[7] 余丹凤 . 浅析野生二粒小麦叶枯病病原菌鉴定及抗病基因遗传特性. 佳木斯职业学院学报, 2016(3):416-418.
[8] 商鸿生, 王凤乐 . 我国小麦叶枯性病害研究进展. 麦类作物学报, 2001,21(3):76-79.
[9] Allali K, Singh P K, Mcmullen M P , et al. Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. Journal of Plant Pathology, 2019,101(4):1115-1125.
doi: 10.1007/s42161-019-00347-x
[10] Xu K G, Jiang Y M, Li Y K , et al. Identification and pathogenicity of fungal pathogens causing black point in wheat on the North China Plain. Indian Journal of Microbiology, 2018,58(2):159-164.
doi: 10.1007/s12088-018-0709-1
[11] Li Q Y, Niu H B, Xu K G , et al. GWAS for resistance against black point caused by Bipolaris sorokiniana in wheat. Journal of Cereal Science, 2020,91:102859.
doi: 10.1016/j.jcs.2019.102859
[12] 中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家标准:GB 1351-2008小麦. 北京: 中国标准出版社, 2008.
[13] Gauthier G M, Keller N P . Crossover fungal pathogens:the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genetics and Biology, 2013,61:146-157.
doi: 10.1016/j.fgb.2013.08.016
[14] Apoga D, Åkesson H, Jansson H B , et al. Relationship between production of the phytotoxin prehelminthosporol and virulence in isolates of the plant pathogenic fungus Bipolaris sorokiniana. European Journal of Plant Pathology, 2002,108(6):519-526.
doi: 10.1023/A:1019976403391
[15] 余蓬勃, 任妍, 侯玮秀 , 等. 小麦苗期抗纹枯病鉴定方法的改良及抗病品种筛选. 植物病理学报, 2019,49(5):715-720.
[16] 李巧云, 倪永静, 姜玉梅 , 等. 联合鉴定小麦对B. sorokiniana黑胚病与叶枯病抗性的方法:CN 201510539645.7. 2019-08-23.
[17] 农作物品种区域试验技术规程 小麦:NY/T 1301-2007. 北京: 中华人民共和国农业部, 2007.
[18] Suraj G, Sujan M, Michael B J , et al. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE, 2014,9(9):e108179.
doi: 10.1371/journal.pone.0108179
[19] Mahto B N, Gurung S, Adhikari T B . Assessing genetic resistance to spot blotch,Stagonospora nodorum blotch and tan spot in wheat from Nepal. European Journal of Plant Pathology, 2011,131(2):249-260.
doi: 10.1007/s10658-011-9803-5
[20] 徐淑霞, 周青, 王卫民 . 河南小麦品种对白粉病、叶枯病的抗性鉴定及评价. 山东农业科学, 2008(7):67-68.
[21] 国娇娇, 马新颖, 缪丽利 , 等. 不同小麦品种组合对小麦壳针孢叶枯病的抗病性鉴定. 中国农学通报, 2013,29(27):187-191.
[22] Duveiller E, Kandel Y R, Sharma R C , et al. Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology, 2005,95:248-256.
doi: 10.1094/PHYTO-95-0248 pmid: 18943117
[23] Sharma R C, Duveiller E . Advancement toward new spot blotch resistant wheat in South Asia. Crop Science, 2007,47:961-968.
doi: 10.2135/cropsci2006.03.0201
[24] 邢小萍, 汪敏, 宋爽 , 等. 不同小麦品种(系)叶枯病田间发病情况及抗性评价. 甘肃农业大学学报, 2009,44(6):102-106.
[1] 杜晓宇, 李楠楠, 邹少奎, 王丽娜, 吕永军, 张倩, 李顺成, 杨光宇, 韩玉林. 黄淮南片新育成小麦品种(系)主要性状的综合性分析[J]. 作物杂志, 2021, (4): 38–45
[2] 项超, 孙素丽, 朱振东, 宗绪晓, 杨涛, 刘荣, 杨梅, 鲜东锋, 杨秀燕. 四川豌豆种质资源白粉病抗性及分子鉴定[J]. 作物杂志, 2021, (3): 51–56
[3] 周正萍, 田宝庚, 陈婉华, 王子阳, 袁伟, 刘世平. 不同耕作方式与秸秆还田对土壤养分及小麦产量和品质的影响[J]. 作物杂志, 2021, (3): 78–83
[4] 赵庆玲, 林文, 任爱霞, 张蓉蓉, 李蕾, 孙敏, 高志强. 春季追肥对冬小麦群体构建和籽粒灌浆进程的影响[J]. 作物杂志, 2021, (3): 99–105
[5] 贾子苗, 邱玉亮, 林志珊, 王轲, 叶兴国. 利用近缘种属优良基因改良小麦研究进展[J]. 作物杂志, 2021, (2): 1–14
[6] 刘阿康, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 高甜甜, 王玉娇, 阚茗溪, 赵广才, 常旭虹. 苗期调控对晚播小麦产量及氮素利用的影响[J]. 作物杂志, 2021, (2): 116–123
[7] 王玉娇, 曹祺, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才, 石书兵. 不同土壤条件下化学调控对小麦产量和品质的影响[J]. 作物杂志, 2021, (2): 96–100
[8] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[9] 安娟华, 董鑫, 王克俭, 何振学. 基于GWO优化SVM的小麦籽粒优劣分级研究[J]. 作物杂志, 2021, (1): 200–206
[10] 王黎明, 孔维玮, 高华利, 董普辉, 闫雪芳, 王春平, 王洪刚, 李兴锋. 小麦4B染色体上LOX基因的等位变异及其区域分布[J]. 作物杂志, 2021, (1): 32–37
[11] 孙辉, 张立平, 侯起岭, 白秀成, 杨吉芳, 张风廷, 赵昌平. 人工控制条件下BS型小麦光温敏雄性不育系育性与光合特性的关系研究[J]. 作物杂志, 2021, (1): 7–15
[12] 王会文, 李蕾, 余少波, 王强, 冯玉, 任爱霞, 林文, 孙敏, 高志强. 干旱年型深翻与探墒沟播对旱地小麦产量形成的贡献[J]. 作物杂志, 2020, (6): 116–122
[13] 郭丹丹, 刘哲文, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 石书兵. 施氮处理对不同筋型小麦产量和品质的影响[J]. 作物杂志, 2020, (6): 158–162
[14] 朱统泉, 宋全昊, 孟祥锋. 不同生长因素变化对小麦产量及品质的影响——以驻马店市近10年小麦生产情况为例[J]. 作物杂志, 2020, (6): 80–88
[15] 黄少辉, 杨军芳, 刘学彤, 杨云马, 邢素丽, 韩宝文, 刘孟朝, 贾良良, 何萍. 长期小麦秸秆还田对壤质潮土磷素含量及磷盈亏的影响[J]. 作物杂志, 2020, (6): 89–96
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!