作物杂志,2022, 第2期: 3543 doi: 10.16035/j.issn.1001-7283.2022.02.006
罗含敏1,2(), 熊发前3, 丘立杭1,2, 刘菁3, 段维兴1,2, 高轶静1,2, 覃夏燕3, 吴建明1,2, 李杨瑞1,2, 刘俊仙1,2,*()
Luo Hanmin1,2(), Xiong Faqian3, Qiu Lihang1,2, Liu Jing3, Duan Weixing1,2, Gao Yijing1,2, Qin Xiayan3, Wu Jianming1,2, Li Yangrui1,2, Liu Junxian1,2,*()
摘要:
分子设计育种在农作物品种改良中发挥了重要作用,但由于甘蔗基因组庞大且高度杂合,染色体呈非整倍性,导致其性状相关的分子标记辅助育种进展十分缓慢。为加快甘蔗育种进程,提高其育种效率和准确性,简述了甘蔗分子标记辅助育种现状及其瓶颈,并总结了应用于甘蔗的分子标记种类及其问题,阐明分子标记在甘蔗遗传连锁图谱构建中的作用,进而从甘蔗产量和糖分性状相关QTL的定位、主要抗病基因(抗褐锈病基因、抗黑穗病和抗黄斑病基因)的定位及其在抗病分子育种上的应用,以及关联分析方法在甘蔗重要性状研究中的应用等方面对性状相关的分子标记进行综述。最后对甘蔗重要性状相关分子标记辅助育种的机遇和挑战进行了展望,为甘蔗分子育种的深入研究提供理论依据。
[1] | Rodrigues R C E, Hu B. Vinasse from sugarcane ethanol production:better treatment or better utilization?. Frontiers in Energy Research, 2017, 5:7. |
[2] |
Candido R G, Aguiar A, Milessi T S, et al. Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass and Bioenergy, 2020, 144:105889.
doi: 10.1016/j.biombioe.2020.105889 |
[3] | 朱专为. 甘蔗栽培品种的主要农艺性状与AFLP和SSR分子标记的关联分析. 福州:福建农林大学, 2018. |
[4] | 吴建涛, 许环映, 谢静, 等. 粤糖系列甘蔗亲本表型性状遗传多样性分析. 植物遗传资源学报, 2018, 19(4):748-759. |
[5] | 罗含敏, 周慧文, 闫海锋, 等. 甘蔗产量形成的要素及其化控措施. 广西糖业, 2020(4):8-14. |
[6] |
Garsmeur O, Droc G, Antonise R, et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications, 2018, 9(1):2638.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662 |
[7] | 彭绍光. 甘蔗高贵化育种法是品种改良的有效方法. 广西农业科学, 1987(1):10-13. |
[8] | 柴进, 余凡, 谢树伟, 等. 甘蔗割手密高贵化育种中分子细胞遗传学研究进展. 华北农学报, 2019, 34(S1):386-393. |
[9] | 黄忠兴, 周峰, 王勤南, 等. 国内外割手密资源农艺性状表型遗传多样性分析. 植物遗传资源学报, 2012, 13(5):825-829. |
[10] | 王平, 李和平, 黄永吉, 等. 拟三属间杂交品系神农高糖蔗种质来源鉴定. 植物遗传资源学报, 2015, 16(5):1103-1110. |
[11] | 周珊, 高轶静, 张保青, 等. 斑茅割手密复合体杂交利用过程野生特异基因遗传分析. 植物遗传资源学报, 2019, 20(3):718-727. |
[12] | 陆鑫, 刘新龙, 毛钧, 等. 甘蔗野生种滇蔗茅利用研究Ⅲ. 滇蔗茅杂种F1群体的表型变异与遗传多样性分析. 植物遗传资源学报, 2013, 14(4):749-753. |
[13] | 毛钧, 刘新龙, 苏火生, 等. 基于表型与分子数据的斑茅核心种质构建. 植物遗传资源学报, 2016, 17(4):607-615. |
[14] |
Zhang J S, Zhang X, Tang H, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.. Nature Genetics, 2018, 50(11):1565-1573.
doi: 10.1038/s41588-018-0237-2 |
[15] |
Li M, Liang Z X, Zeng Yuan, et al. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). BMC Genomics, 2016, 17:195.
doi: 10.1186/s12864-016-2552-2 |
[16] |
Xu S Q, Wang J H, Shang H Y, et al. Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Scientific Reports, 2018, 8:1683.
doi: 10.1038/s41598-018-19832-x |
[17] |
Qiu L H, Chen R F, Fan Y G, et al. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). BMC Genomics, 2019, 20:817.
doi: 10.1186/s12864-019-6201-4 |
[18] |
Chen R F, Fan Y G, Yan H F, et al. Enhanced activity of genes associated with photosynthesis,phytohormone metabolism and cell wall synthesis is involved in gibberellin-mediated sugarcane internode growth. Frontiers in Genetics, 2020, 11:570094.
doi: 10.3389/fgene.2020.570094 |
[19] | 郭韬, 余泓, 邱杰, 等. 中国水稻遗传学研究进展与分子设计育种. 中国科学(生命科学), 2019, 49(10):1185-1212. |
[20] |
Yang X P, Sood S, Glynn N, et al. Constructing high-density genetic maps for polyploidy sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Molecular Breeding, 2017, 37:116.
doi: 10.1007/s11032-017-0716-7 |
[21] | 胡杨. 甘蔗种质资源遗传多样性研究. 南宁:广西大学, 2016:22-36. |
[22] | Khaled K A M, El-Demardash I S, Amer E A M. Genetic polymorphism among some sugarcane germplasm collections as revealed by RAPD and ISSR analyses. Life Science Journal, 2015, 12(3):159-167. |
[23] | 昝逢刚, 应雄美, 吴才文, 等. 98份甘蔗种质资源遗传多样性的AFLP分析. 中国农业科学, 2015, 48(5):1002-1010. |
[24] | 庞新华, 檀小辉, 韦丽君, 等. 35份甘蔗种质的遗传多样性分析及DNA指纹图谱构建. 南方农业学报, 2019, 50(6):1157-1164. |
[25] | Que Y X, Pan Y B, Lu Y H, et al. Genetic analysis of diversity within a chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International, 2014, 2014:468375. |
[26] |
Khan M, Pan Y B, Iqbal J. Development of an RAPD-based SCAR marker for smut disease resistance in commercial sugarcane cultivars of Pakistan. Crop Protection, 2017, 94:166-172.
doi: 10.1016/j.cropro.2016.12.024 |
[27] | 汪洲涛, 游倩, 高世武, 等. 甘蔗品种的AFLP和SSR标记鉴定及其应用. 作物学报, 2018, 44(5):723-736. |
[28] |
Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103(2/3):455-461.
doi: 10.1007/s001220100570 |
[29] |
Collard B C, Mackill D J. Start codon targeted (SCoT) polymorphism:a simple,novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009, 27(1):86-93.
doi: 10.1007/s11105-008-0060-5 |
[30] | 刘新龙, 李旭娟, 刘洪博, 等. 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015, 16(6):1214-1222. |
[31] | 刘新龙, 毛钧, 陆鑫, 等. 甘蔗SSR和AFLP分子遗传连锁图谱构建. 作物学报, 2010, 36(1):177-183. |
[32] |
Andru S, Pan Y B, Thongthawee S. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP,SSR,and TRAP markers. Theoretical and Applied Genetics, 2011, 123:77-93.
doi: 10.1007/s00122-011-1568-x |
[33] |
Aljanabi S M, Parmessur Y, Kross H, et al. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Molecular Breeding, 2007, 19(1):1-14.
doi: 10.1007/s11032-006-9008-3 |
[34] | 姜慧, 潘根, 常丽, 等. 亚麻分子标记辅助育种研究进展. 植物遗传资源学报, 2021, 22(4):910-920. |
[35] | D’Hon A, Grivet L, Feldmann P, et al. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics, 1996, 250(4):405-413. |
[36] |
Grivet L, Arruda P. Sugarcane genomics:depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology, 2002, 5(2):122-127.
doi: 10.1016/S1369-5266(02)00234-0 |
[37] |
Aitken K S, Jackson P A, Mcintyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics, 2005, 110(5):789-801.
pmid: 15700149 |
[38] |
Hoarau J Y, Offmann B, D'Hont A, et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theoretical and Applied Genetics, 2001, 103(1):84-97.
doi: 10.1007/s001220000390 |
[39] |
Silva J A, Sorrells M E, Burnquist W L. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome, 1993, 36(4):782-791.
pmid: 18470024 |
[40] |
Al-Janabi S M, Honeycutt R J, Mcclelland M, et al. A Genetic linkage map of saccharum spontaneum L. ‘SES 208’. Genetics, 1993, 134(4):1249-1260.
doi: 10.1093/genetics/134.4.1249 pmid: 8375659 |
[41] |
Silva J D, Honeycutt R J, Burnquist W, et al. Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Molecular Breeding, 1995, 1(2):165-179.
doi: 10.1007/BF01249701 |
[42] |
Piperidis N, Jackson P A, D’Hont A, et al. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Molecular Breeding, 2008, 21(2):233-247.
doi: 10.1007/s11032-007-9124-8 |
[43] |
Palhares A C, Rodrigues-Morais T B, Van Sluys M A, et al. A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genetics, 2012, 13(51):51-55.
doi: 10.1186/1471-2156-13-51 |
[44] | 杨翠凤, 杨丽涛, 李杨瑞. 甘蔗的起源和进化. 南方农业学报, 2014, 45(10):1744-1750. |
[45] | 李杨瑞. 现代甘蔗学. 北京: 中国农业出版社, 2010. |
[46] |
Barreto F Z, Rosa J R B F, Balsalobre T W A, et al. A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS ONE, 2019, 14(7):e0219843.
doi: 10.1371/journal.pone.0219843 |
[47] | Ming R, Liu S C, Bowers J E, et al. Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Science, 2002, 42(2):570-583. |
[48] |
Pinto L, Garcia A, Pastina M, et al. Analysis of genomic and functional RFLP derived markers associated with sucrose content,fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica, 2010, 172(3):313-327.
doi: 10.1007/s10681-009-9988-2 |
[49] |
Pastina M M, Malosetti M, Gazaffi R, et al. A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theoretical and Applied Genetics, 2012, 124(5):835-849.
doi: 10.1007/s00122-011-1748-8 pmid: 22159754 |
[50] |
Singh R K, Singh S P, Tiwari D K, et al. Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica, 2013, 191(3):333-353.
doi: 10.1007/s10681-012-0841-7 |
[51] |
Hoarau J Y, Grivet L, Offmann B, et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theoretical and Applied Genetics, 2002, 105(6/7):1027-1037.
doi: 10.1007/s00122-002-1047-5 |
[52] |
Balsalobre T W, Silva Pereira G, Margarido G R, et al. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics, 2017, 18:72.
doi: 10.1186/s12864-016-3383-x pmid: 28077090 |
[53] | 李文凤, 尹炯, 单红丽, 等. 多雨湿润蔗区甘蔗重要病害发生流行动态与防控策略. //彭友良,李向东. 中国植物病理学会2017年学术年会论文集. 北京:中国农业科学技术出版社, 2017:418. |
[54] | 贺岚. 广西甘蔗常见病虫害及其防治技术概述. 广西农学报, 2017, 32(5):52-55. |
[55] |
Linnenluecke M K, Zhou C, Smith T, et al. The impact of climate change on the Australian sugarcane industry. Journal of Cleaner Production, 2020, 246(10):118974.
doi: 10.1016/j.jclepro.2019.118974 |
[56] |
Urashima A S, Silva M F, Coraini N F, et al. Temporal incidence of Leifsonia xyli subsp. xyli in sugarcane propagating materials of Brazilian cultivars. Crop Protection, 2020, 128:104976.
doi: 10.1016/j.cropro.2019.104976 |
[57] |
Daugrois J H, Grivet L, Roques D, et al. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theoretical and Applied Genetics, 1996, 92(8):1059-1064.
doi: 10.1007/BF00224049 pmid: 24166636 |
[58] |
Asnaghi C, Roques D, Ruffel S, et al. Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theoretical and Applied Genetics, 2004, 108(4):759-764.
pmid: 14586507 |
[59] |
McIntyre C L, Casu R E, Drenth J, et al. Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome, 2005, 48(3):391-400.
pmid: 16121236 |
[60] |
McIntyre C L, Whan V A, Croft B, et al. Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Molecular Breeding, 2005, 16(2):151-161.
doi: 10.1007/s11032-005-7492-5 |
[61] |
Raboin L M, Oliveira K M, Le Cunff L, et al. Genetic mapping in sugarcane,a high polyploid,using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theoretical and Applied Genetics, 2006, 112(7):1382-1391.
pmid: 16552554 |
[62] |
Asnaghi C, Paulet F, Kaye C, et al. Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theoretical and Applied Genetics, 2000, 101(5/6):962-969.
doi: 10.1007/s001220051568 |
[63] |
Le Cunff L, Garsmeur O, Raboin L M, et al. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n-12x-115). Genetics, 2008, 180:649-660.
doi: 10.1534/genetics.108.091355 pmid: 18757946 |
[64] |
Costet L, Le Cunff L, Royaert S, et al. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theoretical and Applied Genetics, 2012, 125:825-836.
doi: 10.1007/s00122-012-1875-x pmid: 22572763 |
[65] |
Glynn N C, Laborde C, Davidson R W, et al. Utilization of a major brown rust resistance gene in sugarcane breeding. Molecular Breeding, 2013, 31:323-331.
doi: 10.1007/s11032-012-9792-x |
[66] |
Parco A S, Avellaneda M C, Hale A H, et al. Frequency and distribution of the brown rust resistance gene Bru1 and implications for the Louisiana sugarcane breeding programme. Plant Breeding, 2014, 133(5):654-659.
doi: 10.1111/pbr.12186 |
[67] |
Racedo J, Perera M F, Bertani R, et al. Bru1 gene and potential alternative sources of resistance to sugarcane brown rust disease. Euphytica, 2013, 191(3):429-436.
doi: 10.1007/s10681-013-0905-3 |
[68] | 李文凤, 王晓燕, 黄应昆, 等. 31份甘蔗野生核心种质资源褐锈病抗性鉴定及Bru1基因的分子检测. 作物学报, 2015, 41(5):806-812. |
[69] | 李文凤, 王晓燕, 黄应昆, 等. 34份甘蔗栽培原种抗褐锈病性鉴定及Bru1基因的分子检测. 分子植物育种, 2015, 13(8):1814-1821. |
[70] | 李文凤, 王晓燕, 黄应昆, 等. 101份中国甘蔗主要育种亲本褐锈病抗性鉴定及Bru1基因的分子检测. 作物学报, 2016, 42(9):1411-1416. |
[71] | 傅华英, 肖胜华, 刘营航, 等. 我国甘蔗锈病病原菌及甘蔗品系抗褐锈病基因Bru1的分子检测. 热带作物学报, 2016, 37(5):958-963. |
[72] |
Li W F, Wang X Y, Huang Y K, et al. Molecular detection of Bru1 gene and identification of brown rust resistance in Chinese sugarcane germplasm. Sugar Tech, 2016, 19(2):183-190.
doi: 10.1007/s12355-016-0453-y |
[73] |
Neuber A C, dos Santos F R C, da Costa J B, et al. Survey of the Bru1 gene for brown rust resistance in Brazilian local and basic sugarcane germplasm. Plant Breeding, 2017, 136(2):182-187.
doi: 10.1111/pbr.12463 |
[74] | Parmessur Y, Dookun-Saumtally A.QTL mapping for resistance to yellow spot disease in sugarcane clone M134/75. Proceedings of the International Society of Sugar Cane Technologists, 2016, 29:1178-1186. |
[75] | 李鸿博, 谢雨彤, 蔡伟俊, 等. 甘蔗新品系对甘蔗黑穗病菌的抗性鉴定与评价. 植物保护, 2020, 46(5):167-173. |
[76] | 宋修鹏, 张保青, 黄杏, 等. 甘蔗S-腺苷甲硫氨酸合成酶基因(ScSAM)的克隆及表达. 作物学报, 2014, 40(6):1002-1010. |
[77] | 许莉萍, 陈如凯. 与甘蔗抗黑穗病基因连锁的RAPD标记筛选(英文). 应用与环境生物学报, 2004, 10(3):263-267. |
[78] | 高轶静, 张荣华, 张革民, 等. 与甘蔗抗黑穗病基因连锁的SSR标记筛选. 热带作物学报, 2013, 34(11):2222-2226. |
[79] | 丘立杭, 范业庚, 罗含敏, 等. 甘蔗分蘖发生及成茎的调控研究进展. 植物生理学报, 2018, 54(2):192-202. |
[80] |
Racedo J, Gutiérrez L, Perera M F, et al. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biology, 2016, 16(1):142.
doi: 10.1186/s12870-016-0829-x |
[81] |
Yang X P, Song J, Todd J, et al. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.),a ‘sweet’ crop with ‘bitter’ genomes. Plant Biotechnology Journal, 2019, 17(2):488-498.
doi: 10.1111/pbi.12992 |
[82] |
Jannoo N, Grivet L, Dookun A, et al. Linkage disequilibrium among modem sugarcane cultivars. Theoretical and Applied Genetics, 1999, 99(6):1053-1060.
doi: 10.1007/s001220051414 |
[83] |
Raboin L M, Pauquet J, Butterfield M, et al. Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theoretical and Applied Genetics, 2008, 116(5):701-714.
doi: 10.1007/s00122-007-0703-1 |
[84] |
Wei X, Jackson P A, McIntyre C L, et al. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theoretical and Applied Genetics, 2006, 114(1):155-164.
doi: 10.1007/s00122-006-0418-8 |
[85] |
Banerjee N, Siraree A, Yadav S, et al. Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica, 2015, 205(1):185-201.
doi: 10.1007/s10681-015-1422-3 |
[86] |
Singh R K, Banerjee N, Khan M S, et al. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Molecular Genetics and Genomics, 2016, 291(3):1363-1377.
doi: 10.1007/s00438-016-1190-3 pmid: 26961118 |
[87] |
Fickett N, Gutierrez A, Verma M, et al. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics, 2019, 111(6):1794-1801.
doi: 10.1016/j.ygeno.2018.12.002 |
[88] |
You Q, Yang X P, Peng Z, et al. Development of an axiom sugarcane 100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics, 2019, 132(2):2829-2845.
doi: 10.1007/s00122-019-03391-4 |
[89] |
You Q, Yang X P, Peng Z, et al. Development and Applications of a high throughput genotyping tool for polyploid crops:Single Nucleotide Polymorphism (SNP) Array. Frontiers in Plant Science, 2018, 9:104.
doi: 10.3389/fpls.2018.00104 |
[90] |
Singh R B, Mahenderakar M D, Jugran A K, et al. Assessing genetic diversity and population structure of sugarcane cultivars,progenitor species and genera using microsatellite (SSR) markers. Gene, 2020, 753:144800.
doi: 10.1016/j.gene.2020.144800 |
[91] |
Todd J, Pan Y B, Boykin D. Fidelity of sugarcane crosses assessed with SSR markers. Agronomy, 2020, 10:386.
doi: 10.3390/agronomy10030386 |
[92] |
Yang X P, Islam M S, Sood S, et al. Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Frontiers in Plant Science, 2018, 9:350.
doi: 10.3389/fpls.2018.00350 |
[1] | 刘丽敏, 刘红坚, 李傲梅, 何为中. 光温处理对甘蔗试管苗光合自养生根的影响[J]. 作物杂志, 2022, (2): 153157 |
[2] | 闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位[J]. 作物杂志, 2022, (2): 6974 |
[3] | 高凤云, 斯钦巴特尔, 周宇, 贾霄云, 苏少锋, 赵小庆, 金晓蕾. 基于SSR标记的胡麻粗脂肪及脂肪酸组分的关联分析[J]. 作物杂志, 2022, (1): 4449 |
[4] | 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 15 |
[5] | 段振盈, 徐新玉, 李星, 李在峰, 马骏, 姚占军. 12个主产区历史小麦品种抗叶锈病基因分析[J]. 作物杂志, 2021, (5): 2027 |
[6] | 李佳慧, 程琴, 欧克纬, 谭秦亮, 庞新华, 周全光, 吕平, 宋奇琦, 唐毓玮, 朱鹏锦. 不同蔗区甘蔗品种(系)分蘖性状比较及其对产量和产量构成因子的影响[J]. 作物杂志, 2021, (5): 7986 |
[7] | 娄树宝, 李凤云, 田国奎, 王海艳, 田振东, 王立春, 刘喜才, 王辉. 马铃薯种质资源晚疫病抗性评价及分子标记辅助筛选[J]. 作物杂志, 2021, (4): 196201 |
[8] | 郭强, 马文清, 秦昌鲜, 施泽升, 彭崇, 闭德金, 何洪良, 梁永检, 唐利球. 甘蔗新品系的DTOPSIS法综合评价[J]. 作物杂志, 2021, (4): 3237 |
[9] | 范业赓, 陈荣发, 闫海锋, 周慧文, 翁梦苓, 黄杏, 罗霆, 周忠凤, 丘立杭, 吴建明. 甘蔗轮作青饲玉米和花生对甘蔗生长和土壤性状的影响[J]. 作物杂志, 2021, (1): 104111 |
[10] | 徐林, 吴凯朝, 庞天, 邓智年, 张荣华, 黄成丰, 黄海荣, 李毅杰, 刘晓燕, 覃文宪, 王维赞. 促根剂对甘蔗单芽种茎的生长及产量影响[J]. 作物杂志, 2020, (6): 132136 |
[11] | 林淼, 张秋芝, 史利玉, 刘蓓, 王红武, 潘金豹. 玉米秸秆消化率全基因组关联分析[J]. 作物杂志, 2020, (6): 2329 |
[12] | 谢金兰, 林丽, 李长宁, 罗霆, 莫璋红. 氮肥减量条件下间作绿豆压青对甘蔗生长及氮代谢的影响[J]. 作物杂志, 2020, (4): 164169 |
[13] | 袁文娅, 赵晓雷, 周旭梅, 王磊, 彭勃, 王奕. waxy基因功能标记开发及在糯玉米育种中的应用[J]. 作物杂志, 2020, (4): 99106 |
[14] | 范业赓,闫海锋,陈荣发,丘立杭,周慧文,黄杏,翁梦苓,吴建明,李杨瑞,韦生满. 甘蔗脱毒种苗第三代种茎不同体积单芽育苗差异及其移栽效果[J]. 作物杂志, 2020, (2): 194199 |
[15] | 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 1521 |
|