作物杂志,2022, 第3期: 33–38 doi: 10.16035/j.issn.1001-7283.2022.03.005

• 专题综述 • 上一篇    下一篇

水稻叶面肥研究的应用进展与展望

杜海萌(), 韦还和, 余清源, 戴其根()   

  1. 扬州大学水稻产业工程技术研究院,225009,江苏扬州
  • 收稿日期:2022-01-05 修回日期:2022-02-19 出版日期:2022-06-15 发布日期:2022-06-20
  • 通讯作者: 戴其根
  • 作者简介:杜海萌,研究方向为新型肥料研发,E-mail: 121023250@qq.com
  • 基金资助:
    江苏省重点研发计划“稻麦周年优质丰产绿色高效技术集成创新与示范”(BE2019343)

Application Progress and Prospect of Rice Foliar Fertilizer

Du Haimeng(), Wei Huanhe, Yu Qingyuan, Dai Qigen()   

  1. Rice Industry Engineering Technology Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-01-05 Revised:2022-02-19 Online:2022-06-15 Published:2022-06-20
  • Contact: Dai Qigen

摘要:

介绍了叶面肥的发展历程、对水稻增产提质的作用以及存在问题和发展趋势。生产实践表明,水稻叶面肥能够提高水稻产量、改善稻米品质、降低重金属尤其是镉污染。近年来,中国水稻叶面肥施用推广迅速,产品种类繁多,但质量参差不齐,施用方法仍有待改进。在今后的发展中,应加强功能型叶面肥产品的研发,提高产品质量,推广以无人机为重点的肥药混喷技术,提高施用效果。

关键词: 叶面肥, 水稻, 肥料施用

Abstract:

This article discusses the foliar fertiliser development process, its impact on rice yield and quality enhancement, as well as current issues and development trends. Rice foliar fertiliser has been shown to boost rice output, improve rice quality, and minimise heavy metal pollution, particularly cadmium pollution, in the field. In recent years, China has encouraged the use of foliar fertiliser on rice in a big way, and there are a lot of products, but the quality is inconsistent, and the spraying method still needs to be improved. In the future development, the research and development of functional foliar fertilizer products should be strengthened, product quality should be improved, and fertilizer and pesticide mixed spraying technology focusing on drones should be promoted to improve the application effect.

Key words: Foliar fertilizer, Rice, Fertilizer application

表1

叶面肥发展历程

时间Time 发展阶段Development stage 特点Trait
18世纪The 18th century 萌芽 河泥粪等原始材料施用
20世纪40-60年代The 1940s to 1960s 初期 主要是无机盐类,养分浓度低,吸收不稳定
20世纪60-90年代The 1960s to 1990s 中期 加入助剂,种类多样,提高了浓度,出现作物专用配方
20世纪90年代以后After the 1990s 成熟 综合发展,多功能化
[1] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24(1):58-65.
[2] 秦猛, 刘丽华, 郑桂萍, 等. 不同叶面肥及施用时期对水稻穗部性状及产量,品质的影响. 河南农业科学, 2020, 49(9):20-26.
[3] 高贤彪, 卢丽萍. 新型肥料施用技术. 济南: 山东科学技术出版社, 1997:190-191.
[4] 王祖义. 磷酸二氢钾铵及叶肥一号的肥效. 浙江化工, 1981(2):24-27.
[5] 葛建军, 程光明, 夏桂平. 叶面肥的种类与发展趋势探析. 现代农业科技, 2008(23):367-368.
[6] 肖艳, 唐永康, 曹一平, 等. 表面活性剂在叶面肥中的应用与进展. 磷肥与复肥, 2003(4):14-15,68.
[7] 李婷婷, 胡钧铭, 韦彩会, 等. 水稻叶片营养吸收机制及专用叶面肥发展趋势. 江苏农业科学, 2016, 44(12):12-16.
[8] 于广武, 何长兴, 陶国臣, 等. 可溶性叶面肥及其发展趋势——黄萎叶喷剂的研究新进展. 腐植酸, 2006(3):9-14.
[9] Bukovac M J, Wittwer S H, Tukey H B. Anesthetization by di-ethyl ether and the transport of foliar applied radiocalcium. Plant Physiology, 1956, 31(3):254-255.
doi: 10.1104/pp.31.3.254 pmid: 16654875
[10] Hnsvark O N, Wittwer S H, Tukey H B. The metabolism of foliar-applied urea. i. relative rates of CO2 production by certain vegetable plants treated with labeled urea. Plant Physiology, 1953, 28(1):70-76.
doi: 10.1104/pp.28.1.70
[11] Mecklenburg R A, Tukey H B. Influence of foliar leaching on root uptake and translocation of calcium-45 to the stems and foliage of Phaseolus vulgaris. Plant Physiology, 1964, 39(4):533-536.
doi: 10.1104/pp.39.4.533 pmid: 16655956
[12] 王少鹏, 洪煜丞, 黄福先, 等. 叶面肥发展现状综述. 安徽农业科学, 2015, 43(4):96-98.
[13] 张静. 叶面肥及其在作物上的应用. 安徽农学通报, 2007, 13(7):143-144.
[14] 白玉超, 崔国贤, 马渊博, 等. 苎麻叶面施肥研究进展. 中国麻业科学, 2012, 34(3):142-145,120.
[15] 张志斌, 纳添仓. 作物叶面肥施用技术. 现代农业科技, 2009(22): 273,275.
[16] 李永旗, 李鹏程, 刘爱忠, 等. 棉花叶面施肥研究进展. 中国农学通报, 2014, 30(3):15-19.
[17] 李燕婷, 李秀英, 肖艳, 等. 叶面肥的营养机理及应用研究进展. 中国农业科学, 2009, 42(1):162-172.
[18] 雷鸣, 邓思涵, 陈聪颖, 等. 一种增产降镉的水稻叶面肥及其使用方法:中国, 201910510729.6. 2019-06-13.
[19] 李婷婷, 何铁光, 胡钧铭, 等. 功能型叶面肥对杂交水稻叶片生理特性和产量的影响. 杂交水稻, 2017, 32(6):55-58.
[20] 王康, 吴家旺, 戴辉, 等. 沼液叶面肥对水稻生长的影响. 江苏农业科学, 2019, 47(15):126-129.
[21] 魏丹, 杨谦, 迟凤琴, 等. 叶面喷施硒肥对水稻含硒量及产量的影响. 土壤肥料, 2005(1):39-41.
[22] 樊俊, 郑诗樟, 胡红青, 等. 不同专用叶面肥对水稻和柑橘品质影响的初步研究. 湖北农业科学, 2010, 49(3):553-557.
[23] Ram H, Rashid A, Zhang W, et al. Biofortification of wheat,rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant and Soil, 2016, 403(1/2):1-13.
doi: 10.1007/s11104-016-2919-9
[24] 廖文强. 锌肥对水稻产量和籽粒锌含量的影响研究. 南京:南京农业大学, 2013.
[25] 张珍淑, 漆光成, 杨培权, 等. 基施锌肥对水稻产量影响试验初探. 安徽农学通报, 2014, 20(6):84-85.
[26] 刘玉兰, 汪勇, 范文忠, 等. 叶面喷施光碳核肥对水稻产量和品质的影响. 河南农业科学, 2020, 49(10):20-25.
[27] 孔令国, 汪永辉, 韩晓东, 等. 禾稼春叶面肥对不同氮素水平下水稻生长及大米品质的影响. 江苏农业学报, 2018, 34(4):790-798.
[28] 吕倩, 吴良欢, 徐建龙, 等. 叶面喷施氨基酸铁肥对稻米铁含量和营养品质的影响. 浙江大学学报(农业与生命科学版), 2010, 36(5):60-66.
[29] Broadley M R, White P J, Hammond J P, et al. Zinc in plants. New Phytologist, 2007, 173:677-702.
doi: 10.1111/j.1469-8137.2007.01996.x pmid: 17286818
[30] Wessells K R, Brown K H. Estimating the global prevalence of zinc deficiency:results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE, 2012, 7:e50568.
doi: 10.1371/journal.pone.0050568
[31] Graham R D, Ascher J S, Hynes S C. Selection of zinc efficient cereal genotypes for soils of low zinc status. Plant Soil, 1992, 146:241-250.
doi: 10.1007/BF00012018
[32] Phattarakul N, Rerkasem B, Li L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil, 2012, 361:131-141.
doi: 10.1007/s11104-012-1211-x
[33] Zou C Q, Zhang Y Q, Rashid A, et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil, 2012, 361:119-130.
doi: 10.1007/s11104-012-1369-2
[34] Cakmak I. Enrichment of cereal grains with zinc:agronomic or genetic biofortification. Plant Soil, 2008, 302:1-17.
doi: 10.1007/s11104-007-9466-3
[35] Manzeke G M, Mtambanengwe F, Nezomba H, et al. Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crops Research, 2014, 166:128-136.
doi: 10.1016/j.fcr.2014.05.019
[36] Prasad R, Shivay Y S, Kumar D. Agronomic biofortification of cereal grains with iron and zinc. Advances in Agronomy, 2014, 125:55-91.
[37] Liu Z Q. Research advance on the mechanism of cadmium transport in rice. Meteorological and Environmental Research, 2014, 5(5):48-52.
[38] 杨菲, 唐明凤, 朱玉兴. 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015, 30(3):2-8.
[39] 凌启鸿, 张洪程, 丁艳锋, 等. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005(1):3-7.
[40] Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from cont-aminated soils to prevent soil Cd risk-s. Biometals, 2004, 17(5):549-553.
pmid: 15688862
[41] Qiao J T, Liu T X, Wang X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 2018, 195:260-271.
doi: 10.1016/j.chemosphere.2017.12.081
[42] Liu Y, Zhang C B, Zhao Y L, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Science of the Total Environment, 2017, 579:1282-1288.
doi: 10.1016/j.scitotenv.2016.11.115
[43] 杨晓荣, 黄永春, 刘仲齐, 等. 叶面喷施2,3-二巯基丁二酸对水稻幼苗镉吸收转运及抗氧化系统的影响. 环境科学, 2020, 41(7):3441-3448.
[44] Liu C, Li F, Luo C, et al. Foliar appl-ication of two silica sols reduced cadmium accumulation in rice grains. Journal of Hazardous Materials, 2009, 161(2/3):1466-1472.
doi: 10.1016/j.jhazmat.2008.04.116
[45] Wang H, Xu C, Luo Z C, et al. Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions. Environmental Science and Pollution Research, 2018, 25:29287-29294.
doi: 10.1007/s11356-018-2938-6
[46] 张烁, 陆仲烟, 唐琦, 等. 水稻叶面调理剂的降Cd效果及其对营养元素转运的影响. 农业环境科学学报, 2018, 37(11):2507-2513.
[47] Shi X, Zhang C, Wang H, et al. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 2005, 272(1/2):53-60.
doi: 10.1007/s11104-004-3920-2
[48] Cocker K M, Evans D E, Hodson M J. The amelioration of aluminum toxicity by silicon in wheat (Triticum aestivum L.):malate exudation as evidence for an in planta mechanism. Plant, 1998, 204(3):318-323.
[49] Nowakowski W, Nowakowska J. Silicon and copper interaction in the growth of spring wheat seedlings. Biologia Plantarum, 1997, 39(3):463-466.
doi: 10.1023/A:1001009100026
[50] Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 2005, 58(4):475-483.
doi: 10.1016/j.chemosphere.2004.09.034
[51] Drees L R, Wilding L P, Smeck N E, et al. Silica in soils:quartz and disordered silica polymorphs. Manhattan: John Wiley and Sons, Ltd, 2018.
[52] Lindsay W L. Chemical Equilibria in Soils. New York: John Wiley and Sons, 1979, 58:151-199.
[53] Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production. Advances in Agronomy, 1996, 58(8):151-199.
[54] 张宇鹏, 谭笑潇, 陈晓远, 等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响. 生态环境学报, 2020, 29(2):388-393.
[55] 李晓. 水稻生长中后期叶面施肥技术. 农家致富, 2021(15):26.
[56] 李小明, 龙惊惊, 周悦, 等. 叶面肥的应用及研究进展. 安徽农业科学, 2017, 45(3):127-130.
[57] 姜虹. 纳米水铁矿合成及生物纳米复合叶面肥的应用. 南京:南京农业大学, 2016.
[58] 庄舜尧, 曹志洪. 叶面肥的研究与发展. 土壤, 1998(5):230-234.
[59] 吴嫦华. 一种有机硅叶面肥及其制备方法:中国, 200610010247.7. 2006-06-28.
[1] 李睿, 董立强, 商文奇, 于广星, 代贵金, 王铮, 李跃东. 水稻苗期不同喷淋间隔处理对其生长发育及产量的影响[J]. 作物杂志, 2022, (5): 249–254
[2] 董林林, 沈明星, 施林林, 沈园, 王海候, 陆长婴. 生物质炭配施蚯蚓粪对水稻产量及养分吸收的影响[J]. 作物杂志, 2022, (5): 69–77
[3] 周宇娇, 张伟杨, 杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志, 2022, (4): 1–8
[4] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[5] 郑思怡, 杨晔, 宋远辉, 花芹, 林泉祥, 张海涛, 程治军. 水稻甜质胚乳突变体m5788的鉴定及基因定位[J]. 作物杂志, 2022, (4): 14–21
[6] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[7] 张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响[J]. 作物杂志, 2022, (4): 255–261
[8] 高捷, 李思宇, 成大宇, 张杏雨, 顾希, 刘立军. 缓控释肥对水稻产量与品质影响的研究进展[J]. 作物杂志, 2022, (3): 20–26
[9] 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 22–27
[10] 韩丽君, 薛张逸, 谢昊, 顾骏飞. 干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响[J]. 作物杂志, 2022, (2): 222–229
[11] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[12] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[13] 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124–129
[14] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[15] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!