作物杂志,2022, 第4期: 124–131 doi: 10.16035/j.issn.1001-7283.2022.04.017

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

滴施缩节胺对棉花生长发育及产量的影响

张特1(), 李广维1, 李可心2, 李欣欣1, 赵强1()   

  1. 1新疆农业大学农学院/棉花教育部工程研究中心,830052,新疆乌鲁木齐
    2中国农业大学农学院/植物生长调节剂教育部工程研究中心,100193,北京
  • 收稿日期:2021-04-23 修回日期:2021-08-21 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 赵强
  • 作者简介:张特,研究方向为作物化学控制原理与技术,E-mail: 18240968114@163.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2020A01002-2);兵团科技攻关项目(2018AB039);新疆维吾尔自治区科技支疆项目(2018E02030)

Effects of DPC through Drip Irrigation on Growth and Yield of Cotton

Zhang Te1(), Li Guangwei1, Li Kexin2, Li Xinxin1, Zhao Qiang1()   

  1. 1College of Agriculture, Xinjiang Agricultural University/Cotton Engineering Research Center, Ministry of Education; Urumqi 830052, Xinjiang, China
    2College of Agronomy and Biotechnology, China Agricultural University/Engineering Research Center of Plant Growth Regulator of Ministry of Education, Beijing 100193, China
  • Received:2021-04-23 Revised:2021-08-21 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhao Qiang

摘要:

为明确北疆棉区滴施缩节胺(DPC)的可行性,连续2年设置4个滴施DPC水平(D1:262.5g/hm2、D2:525.0g/hm2、D3:1050.0g/hm2和D4:2100.0g/hm2),以喷施525.0g/hm2 DPC为对照(CK),分析滴施不同剂量DPC对棉花农艺性状、干物质积累量及分配、产量及纤维品质的影响。结果表明,棉花的株高随滴施DPC剂量的增加略呈降低趋势,D4处理的株高分别较D1、D2和D3处理降低了13.31%、12.71%和5.44%(2019年)。D2处理的棉花株高与主茎节间长均与CK处理无显著差异,但显著缩短了部分果枝的第2果节长度。滴施处理下,初花期生殖器官干物质占比随着DPC用量增加而增加,D4处理较D1处理增加了5.67%。与CK处理相比,盛铃期D2与D4处理的干物质积累量略有减少。2019年各处理间的产量构成因素及皮棉产量无显著差异;2020年D3处理籽棉产量相比其他滴施DPC处理平均增加了4.90%,CK处理单株结铃数与籽棉产量比滴施处理分别平均增加了0.37与484.94kg/hm2。各处理对棉花的纤维品质影响无显著差异。因此,北疆棉区滴施DPC可有效控制棉花生长,滴施剂量1050.0g/hm2时效果较好。

关键词: 棉花, 滴施, 缩节胺, 果枝长度

Abstract:

The goal of the experiment was to see if dropping DPC was feasible and to understand the varied impacts of DPC absorption through cotton leaves and roots on cotton growth and yield. In this experiment, four levels of DPC were set (D1: 262.5g/ha, D2: 525.0g/ha, D3: 1050.0g/ha, D4: 2100.0g/ha). The control was spraying DPC at a rate of 525.0g/ha (CK). Different DPC dosages were examined and analysed for their impact on cotton agronomic characteristics, dry matter accumulation and distribution, yield, and fibre quality. The results showed that plant height slightly decreased with the increase of the DPC dose. In 2019, plant height of D4 treatment was decreased by 13.31%, 12.71% and 5.44% compared with that of D1, D2 and D3 treatments. The plant height and internode length of main stem of D2 treatment were not significantly different from the CK treatment, but the length of some fruit branches was significantly shortened. Under drip treatment, the dry matter ratio of reproductive organs at the initial flowering stage increased with the increase of the dosage of DPC, and D4 treatment increased by 5.67% compared with D1 treatment. Compared with CK treatment, the dry matter accumulation of D2 and D4 treatments decreased slightly during the full bolling stage. In 2019, there was no significant difference in yield components and cotton yield among treatments. In 2020, the seed cotton yield of D3 treatment was increased by 4.90% compared with other DPC treatments. Compared with drip treatment, CK treatment increased the number of single plant knots and seed cotton yield by 0.37 and 484.94kg/ha. All the treatments had no difference on the fiber quality of cotton. Therefore, the DPC drip application in the northern Xinjiang cotton area could effectively control the cotton growth, and the effect was better when the drip application dose was 1050.0g/ha.

Key words: Cotton, Drip irrigation, DPC, Fruit branch length

表1

滴施缩节胺时间及剂量

处理
Treatment
蕾期
Squaring stage
初花期
Flowering stage
初花期
Flowering stage
盛花期
Full flowering stage
总量
Total amount
D1 30.0 60.0 60.0 112.5 262.5
D2 60.0 120.0 120.0 225.0 525.0
D3 120.0 240.0 240.0 450.0 1050.0
D4 240.0 480.0 480.0 900.0 2100.0
CK 60.0 120.0 120.0 225.0 525.0

表2

2019年棉花田间试验灌水与肥料分配

滴灌时期
Drip irrigation time
灌水量
Drip irrigation (m3/hm2)
氮肥用量
N fertilizer rate (kg/hm2)
钾肥用量
K fertilizer rate (kg/hm2)
磷肥用量
P fertilizer rate (kg/hm2)
蕾期Squaring stage 06-10 300.0 0.0 0.0 0.0
06-18 400.0 15.0 4.5 4.5
花铃期
Flowering and boll stage
06-30 500.0 45.0 9.0 9.0
07-10 600.0 45.0 13.5 13.5
07-21 600.0 45.0 13.5 18.0
08-01 600.0 45.0 18.0 18.0
08-09 600.0 45.0 13.5 13.5
吐絮期Spitting stage 08-19 600.0 45.0 13.5 9.0
08-26 300.0 15.0 4.5 4.5
总量Total amount 4500.0 300.0 90.0 90.0

表3

各处理对棉花农艺性状的影响

年份
Year
处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter(mm)
第1果枝高
Height of the first fruit branch (cm)
主茎叶片数
Number of leaves
果枝台数
Number of fruit branches
2019 D1 83.22a 7.83a 13.22a 21.00a 7.67a
D2 82.78ab 8.13a 14.11a 21.72a 8.55a
D3 77.44ab 8.29a 13.33a 20.66a 7.78a
D4 73.44b 7.44a 13.88a 20.55a 7.66a
CK 79.89ab 7.85a 14.00a 22.79a 7.78a
2020 D1 81.46a 7.43a 18.09a 16.40b 10.85a
D2 81.00a 7.65a 16.33ab 17.22ab 11.03a
D3 77.20b 7.64a 15.70b 16.96ab 11.44a
D4 81.07a 7.60a 17.62a 17.03ab 10.70a
CK 83.77a 7.54a 16.77ab 17.66a 11.22a

图1

各处理对棉花主茎节间长的影响 不同小写字母表示同一部位不同处理间在0.05水平差异,下同

图2

各处理对棉花果枝长度的影响

图3

各处理对2020年棉花果节长度的影响

表4

各处理对棉花根系构型的影响(2020)

处理
Treatment
总根长度
Total root length (cm)
总根表面积
Total root surface area (cm2)
总根体积
Total root volume (cm3)
根平均直径
Mean root diameter (mm)
根尖数
Tips
连接数
Links
分叉数
Forks
D1 236.38b 422.06a 229.76a 3.18a 176.48b 393.84b 179.76b
D2 270.18a 388.23a 176.45b 2.85ab 206.48b 498.67a 233.38a
D3 272.57a 406.20a 188.10ab 2.74b 301.41a 529.09a 223.77a
D4 258.90ab 403.54a 192.87ab 3.06ab 190.05b 478.76a 223.86a
CK 235.62b 410.48a 217.37ab 3.14a 182.35b 399.59b 181.06b

表5

各处理对棉花干物质积累量与分配的影响(2019)

时期
Stage
处理
Treatment
干物质积累量(g/株)
Dry matter accumulation (g/plant)
干物质分配比例
Dry matter distribution ratio (%)
总量
Total
营养器官
Vegetative organ
生殖器官
Reproductive organ
营养器官
Vegetative organ
生殖器官
Reproductive organ
初花期
Flowering
D1 24.51a 21.04a 3.46a 85.84a 14.15a
D2 21.91a 17.98a 3.93a 82.06a 17.93a
D3 24.40a 19.97a 4.43a 81.84a 18.15a
D4 21.62a 17.34a 4.28a 80.17a 19.82a
CK 24.72a 20.54a 4.18a 83.07a 16.92a
盛花期
Full-flowering
D1 40.54a 27.14a 13.39a 66.95a 33.04a
D2 38.84a 26.17a 12.66a 67.38a 32.61a
D3 41.44a 27.80a 13.64a 67.07a 32.92a
D4 38.67a 26.39a 12.27a 68.25a 31.74a
CK 37.03a 25.37a 11.66a 68.50a 31.49a
盛铃期
Full-bolling
D1 68.62b 27.77b 40.85ab 40.47a 59.52a
D2 69.67ab 29.14ab 40.52ab 41.83a 58.16a
D3 66.90b 28.37ab 38.53b 42.40a 57.59a
D4 69.82ab 30.15ab 39.66ab 43.18a 56.81a
CK 75.58a 32.37a 43.21a 42.82a 57.17a

表6

各处理下棉花产量及其构成因素

年份
Year
处理
Treatment
密度(万株/hm2
Density
(×104/hm2)
单株结铃数
Boll number
per plant
单铃重
Boll weight
(g)
衣分
Lint percentage
(%)
籽棉产量
Seed cotton yield
(kg/hm2)
皮棉产量
Lint cotton yield
(kg/hm2)
2019 D1 25.02a 5.06a 5.16a 41.65a 6516.86a 2716.46a
D2 24.97a 4.85a 5.12a 41.85a 6222.78a 2610.28a
D3 24.29a 5.10a 5.20a 41.85a 6392.26a 2675.95a
D4 24.92a 4.88a 5.23a 41.71a 6308.90a 2632.62a
CK 25.26a 4.91a 5.26a 41.80a 6492.33a 2715.72a
2020 D1 24.88a 4.45ab 5.50a 44.11a 6084.54ab 2683.89abc
D2 24.98a 4.24b 5.34a 44.15a 5654.72b 2496.56c
D3 25.07a 4.40ab 5.55a 44.98a 6123.76ab 2754.47ab
D4 25.31a 4.23b 5.42a 44.67a 5773.47b 2579.01bc
CK 25.05a 4.70a 5.44a 44.46a 6394.06a 2842.80a

表7

各处理对棉花纤维品质的影响

年份
Year
处理
Treatment
纤维长度
Fiber length (mm)
断裂比强度
Specific strength (CN/tex)
长度整齐度
Fiber uniformity (%)
断裂伸长率
Breakage elongation (%)
马克隆值
MIC
2019 D1 29.08a 27.77a 85.42a 9.43a 4.90a
D2 28.86a 26.95a 85.18ab 9.23a 4.91a
D3 28.77a 27.55a 83.75b 9.31a 4.86a
D4 28.93a 27.00a 84.66ab 9.37a 4.87a
CK 28.87a 27.38a 84.42ab 9.41a 4.92a
2020 D1 28.83a 29.16a 84.19a 10.70a 4.90a
D2 28.38a 28.98a 83.88a 10.58a 5.00a
D3 28.71a 29.37a 84.15a 10.50a 5.00a
D4 28.57a 29.41a 83.94a 10.59a 5.02a
CK 28.62a 29.23a 84.04a 10.59a 4.98a
[1] 白岩, 毛树春, 田立文, 等. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1):38-50.
[2] 石治鹏, 李敏, 林忠旭, 等. 缩节胺对棉花生长发育的调控效应研究进展. 河南农业科学, 2017, 46(7):1-8.
[3] Shahbaz A T, Ying H, Abdul H, et al. Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crops Research, 2018, 215:59-65.
doi: 10.1016/j.fcr.2017.09.032
[4] 吕宁, 周光海, 陈云, 等. 滴施生物药剂对棉花生长、黄萎病防治及土壤微生物数量的影响. 西北农业学报, 2018, 27(7):1056-1064.
[5] Wang X, Zhu H, Reding M E, et al. Delivery of chemical and microbial pesticides through drip irrigation systems. Applied Engineering in Agriculture, 2009, 25(6):883-893.
doi: 10.13031/2013.29242
[6] 闫夏. 70%噻虫嗪杀虫剂滴施防治棉花蚜虫试验. 农业开发与装备, 2017(2):94.
[7] 杨建荣, 马富裕, 尹小龙, 等. 随水滴施缩节安和多效唑对棉花幼苗生长发育的影响. 石河子大学学报(自然科学版), 2001, 5(4):284-287.
[8] 邓忠, 翟国亮, 吕谋超, 等. 耕作措施与植物生长调节剂对膜下滴灌棉花生长特性及产量的影响. 灌溉排水学报, 2015, 34(12):75-80.
[9] Liao B, Ren X, Du M, et al. Multiple applications of mepiquat chloride enhanced development of plant-wide fruits from square initiation to boll opening in cotton. Crop Science, 2021, 61:2733-2744.
doi: 10.1002/csc2.20496
[10] 刘丽英, 戴茂华, 吴振良. 缩节胺对黄河流域机采棉农艺性状、产量和品质的影响及化控技术研究. 中国农学通报, 2018, 34(33):38-42.
[11] 邢晋, 张思平, 赵新华, 等. 种植密度和缩节胺互作对棉花株型及产量的调控效应. 棉花学报, 2018, 30(1):53-61.
[12] 赵强, 张巨松, 田晓莉, 等. 南疆棉花种子包衣缓释缩节胺化控技术的初步研究. 新疆农业科学, 2010, 47:25-30.
[13] 赵文超, 杜明伟, 黎芳, 等. 应用缩节安(DPC)调控棉花株型的定位定量效应研究. 作物学报, 2019, 45(7):1059-1069.
doi: 10.3724/SP.J.1006.2019.84162
[14] Mao L L, Zhang L Z, Evers J B, et al. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density. Field Crops Research, 2015, 179:63-71.
doi: 10.1016/j.fcr.2015.04.011
[15] Siebert J D, Stewart A M. Influence of plant density on cotton response to mepiquat hloride application. Agronomy Journal, 2006, 98(6):1634-1639.
doi: 10.2134/agronj2006.0083
[16] 何钟佩, 奚惠达, 杨秉芳, 等. DPC效应的定向、定量诱导及其在棉花丰产栽培中的应用. 北京农业大学学报, 1984(1):19-28.
[17] 刘燕. 棉花缩节胺处理与整枝效应的研究. 武汉:华中农业大学, 2013.
[18] 霍飞超, 李鹏程, 李运海, 等. 棉花1膜3行模式下密度和缩节胺用量优化组合. 新疆农业科学, 2020, 57(6):1039-1048.
doi: 10.6048/j.issn.1001-4330.2020.06.007
[19] Pettigrew W T, Johnson J T. Effects of different seeding rates and plant growth regulators on early-planted cotton. Journal of Cotton Science, 2005, 9(4):189-198.
[20] 汪玲, 朱靖蓉, 杨涛, 等. 氮肥施用策略对棉花干物质积累及产量构成的影响. 新疆农业科学, 2010, 47(10):1952-1957.
[21] 宋妮, 孙景生, 陈智芳, 等. 不同水分状况下化控对棉株蕾铃数和产量品质的影响. 干旱地区农业研究, 2015, 33(2):40-49.
[22] Zhao D, Oosterhuis D M. Pix plus and mepiquat chloride effects on physiology,growth,and yield of field-grown cotton. Journal of Plant Growth Regulation, 2000, 19(4):415-422.
doi: 10.1007/s003440000018
[23] Gonias E D, Oosterhuis D M, Bibi A C. Cotton radiation use efficiency response to plant growth regulators. The Journal of Agricultural Science, 2012, 150(5):595-602.
doi: 10.1017/S0021859611000803
[24] 徐新霞, 苏丽丽, 魏鑫, 等. DPC对杂交棉生长发育调控效应研究. 新疆农业科学, 2015, 52(7):1237-1242.
[25] Wilson Jr D G, York A C, Edmisten K L. Narrow-row cotton response to mepiquat chloride. Journal of Cotton Science, 2007, 11(4):177-185.
[1] 张文, 刘铨义, 曾庆涛, 蔡晓莉, 冯杨, 逯涛. 不同株行距配置对机采棉成铃特性及纤维品质的影响[J]. 作物杂志, 2021, (2): 147–152
[2] 孙正冉, 吴昊, 张翠萍, 张晋丽, 贺道华. 棉花化学打顶剂的配制与筛选[J]. 作物杂志, 2021, (1): 112–117
[3] 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175–181
[4] 周海涛, 赵孟圆, 张新军, 李天亮, 刘文婷, 刘振宁, 杨晓虹, 袁卉馥. 缩节胺和矮壮素对燕麦生长发育和产量的调控效应[J]. 作物杂志, 2020, (5): 188–193
[5] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[6] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[7] 袁长凯, 罗海华, 陈功, 高欣, 彭金剑, 向春玲, 殷梦瑶, 王培培, 徐兰兰, 汤飞宇. 不同棉花基因型种子萌发响应铜胁迫的差异[J]. 作物杂志, 2020, (3): 53–59
[8] 王燕,王树林,张谦,冯国艺,雷晓鹏,梁青龙,祁虹. 机采棉主要农艺性状与密度相关性分析[J]. 作物杂志, 2019, (6): 66–70
[9] 阿不都卡地尔·库尔班,夏东,张巨松,崔建平,郭仁松,林涛. 滴灌频次对化学脱叶棉花产量和品质影响机制的研究[J]. 作物杂志, 2019, (4): 113–119
[10] 谭京红,张露萍,吴启侠,朱建强,张在镇. 基于不同肥源的棉花减氮施肥效果比较研究[J]. 作物杂志, 2019, (1): 134–140
[11] 唐丽媛,李兴河,张素君,王海涛,刘存敬,张香云,张建宏. 陆地棉光合相关性状的QTL定位分析[J]. 作物杂志, 2018, (5): 85–90
[12] 张文,逯涛,叶玉霞,刘铨义,冯杨. 新疆奎屯棉花脱叶催熟剂的混用效果研究[J]. 作物杂志, 2018, (3): 103–107
[13] 冯常辉,张友昌,别墅,张教海,王孝纲,夏松波,张成,秦鸿德. 棉花黄萎病抗性分子标记辅助选择改良研究进展[J]. 作物杂志, 2017, (5): 21–25
[14] 徐敏,胡玉枢,李憬霖,金路路,王子胜. 早熟棉创新种质资源主要性状聚类及相关分析[J]. 作物杂志, 2017, (1): 25–31
[15] 朱协飞,李圣华,王森. 5个抗黄萎病棉花品种的抗性配合力分析[J]. 作物杂志, 2016, (6): 33–37
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!