作物杂志,2022, 第4期: 14–21 doi: 10.16035/j.issn.1001-7283.2022.04.003

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

水稻甜质胚乳突变体m5788的鉴定及基因定位

郑思怡1(), 杨晔1, 宋远辉1, 花芹1, 林泉祥1, 张海涛1, 程治军2()   

  1. 1安徽农业大学农学院,230036,安徽合肥
    2中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2021-10-06 修回日期:2021-12-08 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 程治军
  • 作者简介:郑思怡,研究方向为作物遗传育种,E-mail: 2363085742@qq.com
  • 基金资助:
    国家自然科学基金(31871603)

Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.)

Zheng Siyi1(), Yang Ye1, Song Yuanhui1, Hua Qin1, Lin Quanxiang1, Zhang Haitao1, Cheng Zhijun2()   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-10-06 Revised:2021-12-08 Online:2022-08-15 Published:2022-08-22
  • Contact: Cheng Zhijun

摘要:

胚乳发育是种子形成的关键,其决定水稻的外观品质和食味品质。m5788是从粳稻品种中花11的组织培养后代中发现的甜质胚乳突变体,其籽粒皱缩,千粒重与穗粒数均显著降低,淀粉合成受阻,可溶性糖含量显著增加。通过对m5788与IRAT129杂交产生的F2代群体分析表明,甜质胚乳性状受1对隐性核基因控制。对569个F2隐性极端单株进行连锁分析和定位,将目的基因定位在8号染色体长臂端Z8-25.8和Z8-25.9之间110kb的区域内。该区间内存在1个与玉米甜质基因Sugary 1氨基酸序列相似性高达82.2%的基因LOC_Os08g40930,编码一个属于淀粉去分支酶(DBE)途径的异淀粉酶ISA1。测序结果表明,该基因序列和启动子在野生型和m5788中不存在碱基差异。qRT-PCR分析结果表明,与野生型相比,突变体中LOC_Os08g40930的表达量明显降低。同时,DBE途径中支链淀粉酶的编码基因表达量也显著降低。因此,m5788携带的isa1基因是一个新发现的等位变异。

关键词: 水稻, 胚乳发育, 精细定位, 淀粉合成

Abstract:

Starch synthesis in endosperm development determines the appearance and flavor quality of rice grains. m5788 is a shriveled grain sweet embryo mutant derived from the tissue culture progeny of Japonica var. Zhonghua 11. The 1000-grain weight and the number of grains per panicle decreased significantly. Due to the blocking of starch synthesis, the level of soluble sugar increased significantly. Genetic analysis revealed that m5788 was determined by a pair of recessive nuclear genes. Linkage analysis localized the candidate gene to the 110kb region flanked by indel markers of Z8-25.8 and Z8-25.9 on chromosome 8 in 569 F2 mutant individuals. In this region there was a putative isoamylase encoding the gene LOC_Os08g40930, which was 82.2% homologous to maize Sugary 1 and was involved in the DBE pathway of the starch debranching enzyme ISA1. The sequencing results showed that no genomic sequence change occurs in LOC_Os08g40930 between wild type and m5788. However, the qRT-PCR analysis showed that the decrease in the expression level of the gene LOC_Os08g40930 in the mutant m5788 was presented together with the expression level of the coding-gene of pullulanase-type in same DBE pathway. All results suggest that isa1 carried by m5788 is a novel allele.

Key words: Rice, Endosperm development, Fine mapping, Starch synthesis

表1

新开发的Indel和SNP分子标记

标记Marker 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
Z8-25.6 CTCGTGCGCGCGCACCGTTGG GCAGATGGATGGGACGGAGT
Z8-25.7 TTTGGGGCTGGAGCACCTTG CATCATAGAATGTGCTGA
Z8-28.8 TTTTTCTTCTTCTCATGCCTT TTTAGCTTCTCTTCCATTCCA
Z8-25.9 GAAGAGAGCTGATTCAGGAGAGAGC ATAGTTAGGCAGCAACAGCAACG
Z8-26.2 ATGATGGTCCATAAGAGTCG CAGTGTTCAAGATGGTCATTG

表2

qRT-PCR所用引物

引物Primer 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′)
ISA1 GTACTTCGATGTCTCCAATGTCG ATACTCTCCTCGGCTTATCACTG
PUL CCTAAAGCTTACTACCCATGCAT ACATGTCCTTGTCTCCACTTCTT

图1

野生型和突变体m5788的表型鉴定 (a) 成熟期植株;(b) 株高组成(左:野生型,右:m5788);(c) 籽粒外观(中花11号:外侧2圈;m5788:内侧2圈);(d) 粒宽;(e) I2-KI染色

表3

野生型和突变体m5788农艺性状比较

农艺性状
Agronomic trait
野生型
Wild type
突变体
Mutant
株高Plant height (cm) 117.0±2.8 100.2±2.7**
分蘖数Tiller number 9.5±2.1 12.6±1.9*
有效穗数Effective tiller number 9.3±1.7 13.1±2.7**
穗长Panicle length (cm) 24.2±1.3 20.6±1.0**
一次枝梗数Number of primary branches 14.0±1.8 12.9±1.1
二次枝梗数Number of secondary branches 45.8±4.0 43.0±6.6
穗粒数Grain number per panicle 278.0±45.8 184.0±12.3*
结实率Seed setting (%) 97.0±0.0 95.0±2.0
千粒重1000-grain weight (g) 29.6±1.95 15.6±0.87**

表4

野生型和突变体品质指标比较

品质指标Quality index 野生型Wild type 突变体Mutant
水分Moisture 9.99±0.0011 9.89±0.0004
蛋白质Protein 5.67±0.0005 7.58±0.0012**
直链淀粉Amylose 19.26±0.0035 19.62±0.0008*
脂肪酸Fatty acid 14.67±0.0113 16.19±0.0092**
胶稠度Gel consistency 50.63±0.0073 35.97±0.0227**

图2

野生型和突变体不同时期可溶性糖含量比较 “**”表示在P < 0.01水平差异极显著

图3

候选基因M5788的图位克隆 (a) M5788初步定位在第8号染色体标记Z8-24和Z8-26.2之间,(b) M5788被精细定位在Z8-25.8和Z8-25.9之间的110kb范围内,(c) 候选基因LOC_Os08g40930结构

表5

定位区间内基因的功能注释

基因Gene 基因注释Gene annotation
LOC_Os08g40830 含有pumilio结构域的蛋白PPD1
LOC_Os08g40890 与精胺合酶有关
LOC_Os08g40940 表达蛋白
LOC_Os08g40840 胞外复合亚基EXO70
LOC_Os08g40910 表达蛋白
LOC_Os08g40950 表达蛋白
LOC_Os08g40850 线粒体载体蛋白
LOC_Os08g40919 表达蛋白
LOC_Os08g40860 RNA假尿苷合酶
LOC_Os08g40930 α淀粉酶,含有蛋白质的催化结构域
LOC_Os08g40990 受体蛋白激酶1
LOC_Os08g40870 五肽重复蛋白
LOC_Os08g40880 含有蛋白质的RNA识别基序
LOC_Os08g40900 生长素响应因子

图4

LOC_Os08g40930与不同物种同源基因构建的系统发育树 GRMZM2G138060、GRMZM2G150796和GRMZM2G090905为玉米基因,Bradi3g40410、Bradi4g32707和Bradi2g26170为小麦基因,AT2G39930和AT1G03310为拟南芥基因,LOC_Os05g32710和LOC_Os09g29404为水稻基因

图5

OsISA1和OsPUL在野生型和突变体中表达量的比较

[1] 金锡铭. 水稻淀粉突变体flo6的表型分析及基因精细定位. 南京:南京农业大学, 2010.
[2] Manners D J. Recent developments in our understanding of amylopectin structure. Carbohydrate Polymer, 1989, 11(2):87-112.
doi: 10.1016/0144-8617(89)90018-0
[3] Jeon J S, Ryoo N, Hahn T R, et al. Starch biosynthesis in cereal endosperm. Plant Physiology Biochemistry, 2010, 48(6):383-392.
doi: 10.1016/j.plaphy.2010.03.006
[4] Pfister B, Zeeman S C. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 2016, 73(14):2781-2807.
doi: 10.1007/s00018-016-2250-x
[5] Dinges J R, Colleoni C, Myers A M, et al. Molecular structure of three mutations at the maize sugary1locus and their allele-specific phenotypic effects. Plant Physiology, 2001, 125:1406-1418.
pmid: 11244120
[6] Takahashi S, Kumagai Y, Igarashi H, et al. Biochemical analysis of a new sugary-type rice mutant,Hemi-sugary1,carrying a novel allele of the sugary-1 gene. Planta, 2019, 251(1):1-29.
doi: 10.1007/s00425-019-03297-x
[7] Sestili F, Sparla F, Botticella E, et al. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science, 2016, 252:230-238.
doi: 10.1016/j.plantsci.2016.08.001
[8] Ferreira S J, Senning M, Fischer-Stettler M, et al. Simultaneous silencing of isoamylases ISA1,ISA2and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS ONE, 2017, 12(7):e0181444.
doi: 10.1371/journal.pone.0181444
[9] Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM 6 encodes a CBM 48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal, 2014, 77(6):917-930.
doi: 10.1111/tpj.12444
[10] 李家洋, 钱前, 曾大力, 等. 水稻胚乳甜质控制基因SU1及其应用:中国,200510006770.8. 200510006770.8. 2005-02-04.
[11] 赵华, 张其芳, 赵倩, 等. 水稻胚乳糖质突变体Sug-11的淀粉粒结构和粒径分布及相关理化特性. 核农学报, 2015, 29(4):724-733.
doi: 10.11869/j.issn.100-8551.2015.04.0724
[12] Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. The Plant Journal, 2018, 95(3):545-556.
doi: 10.1111/tpj.13970
[13] 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化. 食品研究与开发, 2020, 41(7):196-200.
[14] Kubo A, Colleoni C, Dinges J R, et al. Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiology, 2010, 153(3):956-969.
doi: 10.1104/pp.110.155259
[15] Streb S, Delatte T, Umhang M, et al. Starch granule biosynthesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell, 2008, 20:3448-3466.
doi: 10.1105/tpc.108.063487
[16] Dinges J R, Colleoni C, Myers J. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell, 2003, 15(3):666-680.
pmid: 12615940
[17] Li Q F, Zhang G Y, Dong Z W, et al. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiology Biochemistry, 2009, 47(5):351-358.
doi: 10.1016/j.plaphy.2009.02.001
[18] Kawagoe Y, Kubo A, Satoh H, et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. The Plant Journal, 2005, 42(2):164-174.
doi: 10.1111/j.1365-313X.2005.02367.x
[19] Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999, 121(2):399-409.
pmid: 10517831
[20] Fujita N, Toyosawa Y, Utsumi Y, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. Journal of Experimental Botany, 2009, 60(3):1009-1023.
doi: 10.1093/jxb/ern349 pmid: 19190097
[21] 赵华, 王俊敏, 张其芳, 等. 水稻糖质胚乳突变体Sug-11籽粒灌浆过程的淀粉合成关键酶活性及其与淀粉理化特性关系. 中国水稻科学, 2015, 29(1):73-81.
doi: 10.3969/j.issn.1001-7216.2015.01.009
[22] East E M, Hayes H K. Inheritance in maize. Zeitschrift für induktive Abstammungs-und Vererbungslehre, 1911, 6(1):193-196.
[23] 李水琴, 王文瑞, 刘海英, 等. 玉米胚乳遗传基础及相关基因研究. 种子, 2016, 35(6):45-49.
[24] Nakamura Y, Kubo A, Shimamune T, et al. Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. The Plant Journal, 1997, 12(1):143-153.
doi: 10.1046/j.1365-313X.1997.12010143.x
[25] Kubo A, Rahman S, Utsumi Y, et al. Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase 1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiology, 2005, 137(1):43-56.
doi: 10.1104/pp.104.051359
[1] 周宇娇, 张伟杨, 杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志, 2022, (4): 1–8
[2] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[3] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[4] 张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响[J]. 作物杂志, 2022, (4): 255–261
[5] 高捷, 李思宇, 成大宇, 张杏雨, 顾希, 刘立军. 缓控释肥对水稻产量与品质影响的研究进展[J]. 作物杂志, 2022, (3): 20–26
[6] 杜海萌, 韦还和, 余清源, 戴其根. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022, (3): 33–38
[7] 秦娜, 朱灿灿, 代书桃, 宋迎辉, 李君霞, 王春义. 谷子黄叶色突变体ylm-1的精细定位与功能分析[J]. 作物杂志, 2022, (3): 55–62
[8] 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 22–27
[9] 韩丽君, 薛张逸, 谢昊, 顾骏飞. 干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响[J]. 作物杂志, 2022, (2): 222–229
[10] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[11] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[12] 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124–129
[13] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[14] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[15] 段琉颖, 吴婷, 李霞, 谢建坤, 胡标林. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022, (1): 20–30
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!