作物杂志,2023, 第1期: 20–29 doi: 10.16035/j.issn.1001-7283.2023.01.004

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

主要禾谷类作物DGAT基因家族比较分析

孟亚轩(), 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧()   

  1. 河北北方学院农林科技学院,075000,河北张家口
  • 收稿日期:2021-05-10 修回日期:2021-09-05 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 刘颖慧,主要从事分子生物学研究,E-mail:leely519@126.com
  • 作者简介:孟亚轩,主要从事植物生理学研究,E-mail:997027363@qq.com
  • 基金资助:
    现代种业科技创新专项(21326302D);杂交谷子产业链创新(16226310D);河北省科技厅项目(19226420D)

Identification and Bioinformatics Analysis of DGAT Gene Family in Cereal Crops

Meng Yaxuan(), Yao Xuhang, Sun Yingqi, Zhao Xinyue, Wang Fengxia, Weng Qiaoyun, Liu Yinghui()   

  1. College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, Hebei, China
  • Received:2021-05-10 Revised:2021-09-05 Online:2023-02-15 Published:2023-02-22

摘要:

二酰甘油酰基转移酶(DGAT)是三酰甘油合成的限速酶,在植物油脂合成中发挥重要作用。为明确禾谷类作物DGAT基因家族的表达特征,利用已知DGAT成员序列对主要禾谷类作物进行全基因组扫描,分析其亚型差异及表达特点。结果表明,DGAT蛋白具有高脂肪、碱性和不稳定性。系统发育树中DGAT成员聚类为4个亚族,不同亚族成员间平行进化。DGAT基因结构具有组内保守性和组间多样性,基序存在多种类型,不同亚型成员具有特异的结构域组成。DGAT上游序列中,存在植株发育和胁迫响应等多种类型顺式作用元件,说明DGAT广泛参与不同生物学过程。转录组分析结果显示,DGAT广泛存在于不同组织中。在遭遇干旱和低温等不同非生物胁迫时,DGAT受到不同程度诱导,具有时空表达差异性。本研究可为禾谷类作物DGAT基因家族成员功能研究奠定基础。

关键词: 禾谷类作物, DGAT基因家族, 生物信息学分析, 表达分析

Abstract:

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme for triacylglycerol synthesis and plays an important role in plant oil synthesis. To clarify the expression characteristics of the DGAT gene family in cereal crops, this study performed a genome-wide scan of major cereal crops using known DGAT member sequences to analyze their isoform differences and expression characteristics. The results showed that DGAT proteins were highly fatty, basic and unstable. The DGAT members in the phylogenetic tree were clustered into four subclades, and the members of different subclades evolved in parallel with each other. The gene structure of DGATs was conserved within groups and diverse between groups, and there were multiple types of motifs with specific structural domain compositions of different isoforms. There were multiple types of cis-acting elements in the upstream sequences of DGATs, such as plant development and stress response, indicating that DGATs were widely involved in different biological processes. Transcriptome analysis showed that DGATs were widely present in different tissues. In response to different abiotic stresses such as drought and low temperature, DGATs were induced to different degrees with differential spatial and temporal expression. This study may lay the foundation for functional studies of DGAT gene family members in cereal crops.

Key words: Cereal crops, DGAT gene family, Bioinformatics analysis, Expression analysis

表1

DGAT家族成员信息

物种
Species
基因名
Genetic
name
染色体位置
Chromosome
position
氨基酸
长度
Amino acid
length
分子量
Molecular
weight
(kDa)
理论
等电点
Isoelectric
point
不稳定系数
Coefficient
of instability
脂肪系数
Fat
coefficient
亲水性
总均值
Hydrophilic
total mean
α-螺旋
α-
spiral
(%)
延伸链
Extended
chain (%)
β-转角
β-
corner
(%)
无规则
卷曲
Random
coil (%)
亚细胞定位
Subcellular
localization
水稻
Oryza
sativa
OsDGAT1-1 chr5.5971951-5978628 538 59.60 9.15 48.49 99.01 0.265 48.14 10.22 3.72 37.92 质膜
OsDGAT1-2 chr6.21677541-21684368 477 55.11 9.43 44.61 106.90 0.309 50.31 13.00 4.40 32.29 质膜
OsDGAT2-1 chr2.29599167-29601738 338 37.55 9.71 35.13 95.18 0.299 36.98 21.01 9.17 32.84 质膜
OsDGAT2-2 chr6.12809778-12812419 340 37.77 9.34 34.22 98.94 0.311 38.24 19.12 7.35 35.29 质膜
OsWSD-1 chr1.28033034-28051826 484 52.75 7.27 35.77 85.91 0.007 36.78 16.74 4.54 41.94 细胞质
OsWSD-2 chr1.32484736-32489971 531 58.21 6.77 45.88 87.87 -0.144 38.42 17.89 3.77 39.92 质膜
OsWSD-3 chr5.27660691-27664963 565 62.37 9.11 53.17 86.88 -0.191 38.94 14.87 3.18 43.01 内质网
谷子
Setaria
italica
SiDGAT1-1 chr3.7546566-7553318 521 58.43 9.13 48.63 102.42 0.311 47.60 10.75 4.41 37.24 质膜
SiDGAT1-2 chr4.36212704-36219516 495 56.79 9.51 48.61 104.38 0.298 46.26 11.52 3.64 38.59 质膜
SiDGAT2-1 chr1.36275566-36279052 273 30.03 9.91 41.83 101.83 0.469 33.70 19.78 7.69 38.83 质膜
SiDGAT2-2 chr4.16556591-16559685 364 40.31 10.66 54.99 85.49 -0.077 29.12 18.41 7.69 44.78 质膜
SiWSD-1 chr2.1723994-1726391 477 52.20 8.57 43.36 98.99 0.095 40.25 17.61 3.14 38.99 质膜
SiWSD-2 chr3.11005742-11010410 273 30.04 9.91 41.83 101.83 0.469 33.70 19.78 7.69 38.83 内质网
SiWSD-3 chr5.33312705-33316538 538 57.92 7.67 44.54 87.10 0.013 41.64 13.57 3.72 41.08 细胞质
SiWSD-4 chr5.37959858-37963149 491 54.05 9.09 39.99 94.38 -0.034 40.94 15.07 3.46 40.53 叶绿体
SiWSD-5 chr8.35767324-35770211 439 47.88 8.77 43.46 99.00 0.080 36.90 15.72 3.64 43.74 质膜
SiWSD-6 chr9.45940206-45942823 515 56.14 6.68 40.82 93.44 0.000 38.45 16.31 3.69 41.55 内质网
小麦
Triticum
aestivum
TaDGAT1-1 chr1A.148953747-148959478 513 57.74 8.92 51.01 99.61 0.295 48.34 11.70 4.29 35.67 质膜
TaDGAT1-2 chr1B.195590716-195596372 513 57.75 8.99 50.36 99.81 0.299 47.56 12.87 4.29 35.28 质膜
TaDGAT1-3 chr1D.141705469-141711495 513 57.78 9.07 49.88 99.61 0.290 48.34 11.89 4.48 35.28 质膜
TaDGAT1-4 chr7A.532701958-532710211 470 54.07 9.20 43.38 105.38 0.291 47.87 11.28 2.98 37.87 质膜
TaDGAT1-5 chr7B.491164040-491172543 471 54.14 9.20 43.22 105.37 0.293 46.28 11.68 2.97 39.07 质膜
TaDGAT1-6 chr7D.467917764-467926136 470 54.07 9.25 43.56 106.43 0.301 47.45 12.13 3.83 36.60 质膜
TaDGAT2-1 chr1A.309910012-309913118 247 28.36 9.85 41.85 100.97 0.199 28.34 27.13 7.69 36.84 细胞质
TaDGAT2-2 chr6A.506235347-506239101 455 50.25 10.66 40.57 82.79 -0.208 29.01 18.02 5.27 47.69 叶绿体
TaDGAT2-3 chr6B.550077872-550080884 472 52.14 10.57 47.88 78.96 -0.251 28.60 15.25 8.05 48.09 质膜
TaDGAT2-4 chr6D.365278335-365281853 325 36.50 9.79 33.08 103.17 0.273 37.85 20.62 5.85 35.69 质膜
TaDGAT2-5 chr7A.14172212-14175945 334 37.25 9.08 43.90 90.78 0.275 34.14 19.76 6.29 39.82 质膜
TaDGAT2-6 chr7A.195308047-195310553 336 37.36 9.05 40.72 99.29 0.226 33.93 20.54 9.23 36.31 细胞质
TaDGAT2-7 chr7B.332923582-332926431 344 38.04 8.76 40.06 101.54 0.255 37.50 17.73 7.56 37.21 质膜
TaDGAT2-8 chr7D.14836474-14841174 324 36.23 9.51 46.31 89.66 0.241 37.96 19.14 7.10 35.80 质膜
TaDGAT2-9 chr7D.188821967-188824699 347 38.47 8.90 40.64 101.47 0.248 30.84 19.88 7.78 41.50 质膜
TaWSD-1 chr2A.24154221-24157435 218 25.13 6.30 48.21 91.19 -0.128 47.71 12.84 5.50 33.94 细胞质
TaWSD-2 chr2D.1912608-1922943 496 55.43 9.67 44.73 96.67 -0.027 40.73 16.13 2.42 40.73 叶绿体
TaWSD-3 chr3A.9843405-9846523 495 55.06 8.98 46.92 95.29 0.032 39.19 16.77 3.03 41.01 质膜
TaWSD-4 chr3A.11023281-11028199 501 56.02 9.04 52.97 94.31 0.001 37.92 15.97 2.59 43.51 质膜
TaWSD-5 chr3B.5230206-5234785 334 37.25 9.08 43.90 90.78 0.275 34.13 19.76 6.29 39.82 质膜
TaWSD-6 chr3B.6670118-6673010 499 55.56 8.98 45.90 93.55 0.003 38.28 17.03 2.81 41.88 叶绿体
TaWSD-7 chr3B.13744964-13749320 504 56.45 8.87 52.07 93.00 0.016 37.50 17.26 2.58 42.66 质膜
TaWSD-8 chr3B.481649743-481652877 509 56.58 8.76 40.81 98.45 0.019 41.45 16.50 4.13 37.92 质膜
TaWSD-9 chr3D.4179986-4182963 496 55.35 9.08 44.33 92.56 -0.011 38.91 16.13 3.02 41.94 叶绿体
TaWSD-10 chr3D.370123379-370126365 432 48.08 6.52 38.86 95.25 -0.007 44.21 15.51 3.94 36.34 细胞质
TaWSD-11 chr6B.550077872-550080884 500 55.57 9.10 47.36 93.40 0.041 39.40 19.80 2.80 38.00 质膜
玉米
Zea
mays
ZmDGAT1-1 chr6.108212462-108219350 197 23.65 9.32 37.25 101.37 0.471 60.41 11.68 3.55 24.37 质膜
ZmDGAT1-2 chr6.136606701-136613008 536 60.17 9.21 48.34 101.19 0.352 50.00 11.38 4.48 34.14 质膜
ZmDGAT2-1 chr4.12951363-12952979 140 15.71 6.80 49.60 106.50 0.500 31.43 25.00 7.14 36.43 叶绿体
ZmDGAT2-2 chr4.165057547-165060492 409 45.26 10.75 45.52 85.40 -0.072 30.56 15.65 6.60 47.19 质膜
ZmDGAT2-3 chr5.50715540-50717216 204 22.88 8.70 39.00 96.03 0.009 31.37 24.51 10.78 33.33 叶绿体
ZmDGAT2-4 chr9.47487176-47490826 332 37.16 9.60 32.44 97.80 0.247 37.35 19.88 6.33 36.45 质膜
ZmWSD-1 chr6.167699425-167706622 556 61.29 9.23 47.05 83.63 -0.170 39.57 15.29 2.70 42.45 质膜
高粱
Sorghum
bicolor
SbDGAT1-1 chr9.8916935-8923148 515 57.86 9.13 46.93 99.86 0.295 48.93 10.68 3.50 36.89 质膜
SbDGAT1-2 chr10.50099836-50118712 484 55.62 9.23 44.56 102.75 0.294 51.24 11.57 2.48 34.71 质膜
SbDGAT2-1 chr4.60698402-60701452 334 37.08 9.81 37.91 98.95 0.320 35.33 18.56 7.19 38.92 质膜
SbDGAT2-2 chr8.4821575-4825729 290 33.34 9.36 44.87 81.97 0.169 33.79 24.83 7.59 33.79 叶绿体
SbDGAT2-3 chr10.19611856-19615565 332 37.50 9.76 39.99 91.63 0.158 37.35 19.58 8.13 34.94 质膜
SbWSD-1 chr2.1839607-1843547 494 54.62 9.11 52.05 93.99 -0.052 37.65 17.41 3.85 41.09 质膜
SbWSD-2 chr3.63801546-63804967 372 41.50 9.00 40.16 95.94 0.048 41.40 17.20 3.49 37.90 内质网
SbWSD-3 chr6.9222487-9226442 468 51.05 7.20 37.29 97.14 0.060 34.19 17.31 2.78 45.73 细胞质
SbWSD-4 chr9.56810016-56817272 554 61.07 9.34 45.02 81.44 -0.175 39.89 15.34 3.25 41.52 质膜

图1

DGAT系统发育树

图2

DGAT氨基酸序列分析 a:DGAT序列比对,b:DGAT氨基酸位点分析

图3

DGAT基因结构、蛋白结构、基序、结构域分析 (a) DGAT基因结构及基序分析,(b) DGAT3基序分析,(c) DGAT结构域分析,(d) DGAT三级结构

图4

ZmDGAT蛋白互作网络 淡蓝色线段表示来自数据库,紫色表示试验证明,黄色表示文本挖掘,黑色表示共表达

图5

DGAT启动子分析 A:ABA响应元件,B:厌氧诱导元件,C:生长素响应元件,D:防御与应激响应元件,E:光响应元件,F:低温响应元件,G:茉莉酸响应元件,H:分生组织表达,I:昼夜节律调控元件,J:赤霉素响应元件,K:胚乳特异性表达元件,L:种子特异性调控元件,M:玉米醇溶蛋白代谢调控元件,N:水杨酸响应元件,O:细胞周期调控元件

图6

DGAT基因家族表达模式分析 部分基因未匹配到数据,灰色代表基因不表达。(a):TaDGATs植株建成表达热图;(b):ABA、干旱、弱碱胁迫下SbDGATs在根和茎中表达热图;(c):氨、干旱、硝酸、尿素胁迫下SiDGATs表达热图;(d):高温、干旱、复合胁迫下TaDGATs表达热图;(e):不同氧化处理的高温、低温胁迫下OsDGATs表达热图;(f):干旱、淹没胁迫下ZmDGATs基因表达热图(L1-玉米品种B73,L2-玉米品种B97,L3-玉米耐受品种Mo18w,L4-玉米耐受品种M162w)

图7

ZmDGATs在非生物胁迫下qRT-PCR的表达分析

[1] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Current Opinion in Biotechnology, 2018, 49:191-198.
doi: S0958-1669(17)30085-X pmid: 28987914
[2] Du Z Y, Benning C. Triacylglycerol Accumulation in photosynthetic cells in plants and algae. Subcellular Biochemistry, 2016, 86:179-205.
[3] Bhatt-Wessel B, Jordan T W, Miller J H, et al. Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics, 2018, 655:1-11.
doi: S0003-9861(18)30190-5 pmid: 30077544
[4] Chen G, Xu Y, Siloto R M P, et al. High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. Plant Journal, 2017, 92(2):167-177.
doi: 10.1111/tpj.13652
[5] Liu D, Ji H, Yang Z. Functional characterization of three novel genes encoding diacylglycerol acyltransferase (DGAT) from oil- rich tubers of cyperus esculentus. Plant and Cell Physiology. 2020, 61(1):118-129.
doi: 10.1093/pcp/pcz184
[6] Zheng L, Shockey J, Guo F, et al. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Journal of Plant Physiology, 2017, 219:62-70.
doi: S0176-1617(17)30242-0 pmid: 29031100
[7] Zhou X R, Shrestha P, Yin F, et al. AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Letters, 2013, 587(15):2371-2376.
doi: 10.1016/j.febslet.2013.06.003
[8] Gao H, Gao Y, Zhang F, et al. Functional characterization of an novel acyl-CoA:diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from camelina sativa. Plant Science, 2021, 303:110752.
doi: 10.1016/j.plantsci.2020.110752
[9] Aymé L, Arragain S, Canonge M, et al. Arabidopsis thaliana DGAT 3 is a [2Fe-2S] protein involved in TAG biosynthesis. Scientific Reports, 2018, 8(1):17254.
doi: 10.1038/s41598-018-35545-7
[10] 陶芬芳. 甘蓝型油菜二酰甘油酰基转移酶(BnDGAT3)基因克隆与表达研究. 长沙:湖南农业大学, 2017.
[11] Rosli R, Chan P L, Chan K L, et al. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1,DGAT2,DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Science, 2018, 275:84-96.
doi: 10.1016/j.plantsci.2018.07.011
[12] Yan B, Xu X, Gu Y, et al. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61(10):735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654
[13] 闫博巍, 许晓萱, 谷英楠, 等. 玉米Ⅰ型二酰基转移酶基因(DGAT1)的生物信息学分析及其在非生物胁迫下的表达研究. 玉米科学, 2018, 26(1):20-28.
[14] Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid,sugars,and osmotic stress during germination and seedling development. Plant Physiology, 2002, 129(3):1352-1358.
doi: 10.1104/pp.006122
[15] Siloto R M, Truksa M, Brownfield D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase:development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiology and Biochemistry, 2009, 47(6):456-461.
doi: 10.1016/j.plaphy.2008.12.019
[16] Ortiz R, Geleta M, Gustafsson C, et al. Oil crops for the future. Current Opinion in Plant Biology, 2020, 56:181-189.
doi: S1369-5266(19)30118-9 pmid: 31982290
[17] Singh Y, Sharma A, Singla A. Non-edible vegetable oil-based feedstocks capable of bio-lubricant production for automotive sector applications-a review. Environmental Science and Pollution Research, 2019, 26(15):14867-14882.
doi: 10.1007/s11356-019-05000-9
[18] van Dijk E L, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9):666-681.
doi: S0168-9525(18)30096-9 pmid: 29941292
[19] 郑玲, 单雷, 李新国, 等. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6):10-18.
[20] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[21] Liu Q, Siloto R M, Lehner R, et al. Acyl-CoA:diacylglycerol acyltransferase:molecular biology,biochemistry and biotechnology. Progress in Lipid Research, 2012, 51(4):350-377.
doi: 10.1016/j.plipres.2012.06.001
[22] Cao H. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Research Notes, 2011, 4:249.
doi: 10.1186/1756-0500-4-249 pmid: 21777418
[23] Qiao X, Li Q, Yin H, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology, 2019, 20(1):38.
doi: 10.1186/s13059-019-1650-2 pmid: 30791939
[24] Xu C, Shanklin J. Triacylglycerol metabolism,function,and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 2016, 67:179-206.
doi: 10.1146/annurev-arplant-043015-111641
[1] 周菲. 向日葵HaLACS7基因的生物信息学和表达分析[J]. 作物杂志, 2022, (3): 104–108
[2] 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 73–79
[3] 尹桂芳, 段迎, 杨晓琳, 蔡苏云, 王艳青, 卢文洁, 孙道旺, 贺润丽, 王莉花. 苦荞FtC4H基因克隆与生物信息学分析[J]. 作物杂志, 2022, (1): 77–83
[4] 王志龙, 薛应红, 郝月茹, 刘宝玲, 苑丽霞, 薛金爱, 李润植. 亚麻荠油脂相关转录因子CsLEC2基因家族的鉴定及表达分析[J]. 作物杂志, 2020, (5): 23–32
[5] 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 84–90
[6] 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 33–42
[7] 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183–190
[8] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
[9] 朱畇昊,爼梦航,苏秀红,董诚明,陈随清. 冬凌草HMGS基因的克隆与表达分析[J]. 作物杂志, 2016, (5): 25–30
[10] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[11] 袁红梅,郭文栋,赵丽娟,于莹,吴建忠,程莉莉,赵东升,康庆华,黄文功,姚玉波,宋喜霞,姜卫东,刘岩,马廷芬,吴广文,关凤芝. 亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析[J]. 作物杂志, 2016, (4): 62–67
[12] 向鹏, 龙承波, 罗红丽. 水稻OsMED7基因的克隆及表达分析[J]. 作物杂志, 2013, (3): 21–24
[13] 刘允晶. 禾谷类作物耐盐细胞突变体筛选的研究进展[J]. 作物杂志, 1994, (6): 11–12
[14] 王海波. 细胞培养中细胞状态的调控[J]. 作物杂志, 1991, (3): 3–6
[15] 高立荣. 同源四倍体荞麦生物学特性观察[J]. 作物杂志, 1989, (3): 17–18
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!