作物杂志,2023, 第1期: 2029 doi: 10.16035/j.issn.1001-7283.2023.01.004
孟亚轩(), 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧()
Meng Yaxuan(), Yao Xuhang, Sun Yingqi, Zhao Xinyue, Wang Fengxia, Weng Qiaoyun, Liu Yinghui()
摘要:
二酰甘油酰基转移酶(DGAT)是三酰甘油合成的限速酶,在植物油脂合成中发挥重要作用。为明确禾谷类作物DGAT基因家族的表达特征,利用已知DGAT成员序列对主要禾谷类作物进行全基因组扫描,分析其亚型差异及表达特点。结果表明,DGAT蛋白具有高脂肪、碱性和不稳定性。系统发育树中DGAT成员聚类为4个亚族,不同亚族成员间平行进化。DGAT基因结构具有组内保守性和组间多样性,基序存在多种类型,不同亚型成员具有特异的结构域组成。DGAT上游序列中,存在植株发育和胁迫响应等多种类型顺式作用元件,说明DGAT广泛参与不同生物学过程。转录组分析结果显示,DGAT广泛存在于不同组织中。在遭遇干旱和低温等不同非生物胁迫时,DGAT受到不同程度诱导,具有时空表达差异性。本研究可为禾谷类作物DGAT基因家族成员功能研究奠定基础。
[1] |
Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Current Opinion in Biotechnology, 2018, 49:191-198.
doi: S0958-1669(17)30085-X pmid: 28987914 |
[2] | Du Z Y, Benning C. Triacylglycerol Accumulation in photosynthetic cells in plants and algae. Subcellular Biochemistry, 2016, 86:179-205. |
[3] |
Bhatt-Wessel B, Jordan T W, Miller J H, et al. Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics, 2018, 655:1-11.
doi: S0003-9861(18)30190-5 pmid: 30077544 |
[4] |
Chen G, Xu Y, Siloto R M P, et al. High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. Plant Journal, 2017, 92(2):167-177.
doi: 10.1111/tpj.13652 |
[5] |
Liu D, Ji H, Yang Z. Functional characterization of three novel genes encoding diacylglycerol acyltransferase (DGAT) from oil- rich tubers of cyperus esculentus. Plant and Cell Physiology. 2020, 61(1):118-129.
doi: 10.1093/pcp/pcz184 |
[6] |
Zheng L, Shockey J, Guo F, et al. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Journal of Plant Physiology, 2017, 219:62-70.
doi: S0176-1617(17)30242-0 pmid: 29031100 |
[7] |
Zhou X R, Shrestha P, Yin F, et al. AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Letters, 2013, 587(15):2371-2376.
doi: 10.1016/j.febslet.2013.06.003 |
[8] |
Gao H, Gao Y, Zhang F, et al. Functional characterization of an novel acyl-CoA:diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from camelina sativa. Plant Science, 2021, 303:110752.
doi: 10.1016/j.plantsci.2020.110752 |
[9] |
Aymé L, Arragain S, Canonge M, et al. Arabidopsis thaliana DGAT 3 is a [2Fe-2S] protein involved in TAG biosynthesis. Scientific Reports, 2018, 8(1):17254.
doi: 10.1038/s41598-018-35545-7 |
[10] | 陶芬芳. 甘蓝型油菜二酰甘油酰基转移酶(BnDGAT3)基因克隆与表达研究. 长沙:湖南农业大学, 2017. |
[11] |
Rosli R, Chan P L, Chan K L, et al. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1,DGAT2,DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Science, 2018, 275:84-96.
doi: 10.1016/j.plantsci.2018.07.011 |
[12] |
Yan B, Xu X, Gu Y, et al. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61(10):735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654 |
[13] | 闫博巍, 许晓萱, 谷英楠, 等. 玉米Ⅰ型二酰基转移酶基因(DGAT1)的生物信息学分析及其在非生物胁迫下的表达研究. 玉米科学, 2018, 26(1):20-28. |
[14] |
Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid,sugars,and osmotic stress during germination and seedling development. Plant Physiology, 2002, 129(3):1352-1358.
doi: 10.1104/pp.006122 |
[15] |
Siloto R M, Truksa M, Brownfield D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase:development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiology and Biochemistry, 2009, 47(6):456-461.
doi: 10.1016/j.plaphy.2008.12.019 |
[16] |
Ortiz R, Geleta M, Gustafsson C, et al. Oil crops for the future. Current Opinion in Plant Biology, 2020, 56:181-189.
doi: S1369-5266(19)30118-9 pmid: 31982290 |
[17] |
Singh Y, Sharma A, Singla A. Non-edible vegetable oil-based feedstocks capable of bio-lubricant production for automotive sector applications-a review. Environmental Science and Pollution Research, 2019, 26(15):14867-14882.
doi: 10.1007/s11356-019-05000-9 |
[18] |
van Dijk E L, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9):666-681.
doi: S0168-9525(18)30096-9 pmid: 29941292 |
[19] | 郑玲, 单雷, 李新国, 等. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6):10-18. |
[20] |
Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[21] |
Liu Q, Siloto R M, Lehner R, et al. Acyl-CoA:diacylglycerol acyltransferase:molecular biology,biochemistry and biotechnology. Progress in Lipid Research, 2012, 51(4):350-377.
doi: 10.1016/j.plipres.2012.06.001 |
[22] |
Cao H. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Research Notes, 2011, 4:249.
doi: 10.1186/1756-0500-4-249 pmid: 21777418 |
[23] |
Qiao X, Li Q, Yin H, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology, 2019, 20(1):38.
doi: 10.1186/s13059-019-1650-2 pmid: 30791939 |
[24] |
Xu C, Shanklin J. Triacylglycerol metabolism,function,and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 2016, 67:179-206.
doi: 10.1146/annurev-arplant-043015-111641 |
[1] | 周菲. 向日葵HaLACS7基因的生物信息学和表达分析[J]. 作物杂志, 2022, (3): 104108 |
[2] | 杨晓琳, 段迎, 蔡苏云, 贺润丽, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王莉花. 苦荞漆酶基因的克隆与生物信息学分析[J]. 作物杂志, 2022, (3): 7379 |
[3] | 尹桂芳, 段迎, 杨晓琳, 蔡苏云, 王艳青, 卢文洁, 孙道旺, 贺润丽, 王莉花. 苦荞FtC4H基因克隆与生物信息学分析[J]. 作物杂志, 2022, (1): 7783 |
[4] | 王志龙, 薛应红, 郝月茹, 刘宝玲, 苑丽霞, 薛金爱, 李润植. 亚麻荠油脂相关转录因子CsLEC2基因家族的鉴定及表达分析[J]. 作物杂志, 2020, (5): 2332 |
[5] | 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 8490 |
[6] | 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 3342 |
[7] | 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183190 |
[8] | 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 5361 |
[9] | 朱畇昊,爼梦航,苏秀红,董诚明,陈随清. 冬凌草HMGS基因的克隆与表达分析[J]. 作物杂志, 2016, (5): 2530 |
[10] | 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 7579 |
[11] | 袁红梅,郭文栋,赵丽娟,于莹,吴建忠,程莉莉,赵东升,康庆华,黄文功,姚玉波,宋喜霞,姜卫东,刘岩,马廷芬,吴广文,关凤芝. 亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析[J]. 作物杂志, 2016, (4): 6267 |
[12] | 向鹏, 龙承波, 罗红丽. 水稻OsMED7基因的克隆及表达分析[J]. 作物杂志, 2013, (3): 2124 |
[13] | 刘允晶. 禾谷类作物耐盐细胞突变体筛选的研究进展[J]. 作物杂志, 1994, (6): 1112 |
[14] | 王海波. 细胞培养中细胞状态的调控[J]. 作物杂志, 1991, (3): 36 |
[15] | 高立荣. 同源四倍体荞麦生物学特性观察[J]. 作物杂志, 1989, (3): 1718 |
|