作物杂志,2022, 第1期: 7783 doi: 10.16035/j.issn.1001-7283.2022.01.011
尹桂芳1(), 段迎2, 杨晓琳2, 蔡苏云2, 王艳青1, 卢文洁1, 孙道旺1, 贺润丽2(), 王莉花1()
Yin Guifang1(), Duan Ying2, Yang Xiaolin2, Cai Suyun2, Wang Yanqing1, Lu Wenjie1, Sun Daowang1, He Runli2(), Wang Lihua1()
摘要:
克隆苦荞苯丙烷类物质代谢途径中的关键酶肉桂酸-4-羟基化酶基因(FtC4H),为进一步研究其功能奠定基础。以云荞1号和小米荞为材料,提取不同发育期果壳RNA,利用RT-PCR法克隆苦荞FtC4H基因,运用生物信息学分析FtC4H蛋白的特征,构建FtC4H蛋白系统进化树,分析其基因表达。结果表明,克隆的FtC4H基因序列包含1299bp完整的cDNA开放阅读框,编码432个氨基酸,为亲水性不稳定碱性蛋白,具有P450超家族保守域,不具有跨膜结构域,有丰富的二级结构,三级结构预测显示FtC4H与6vby.1.A的序列相似度高。系统进化分析结果表明,本研究克隆的FtC4H与已报道的苦荞其他C4H基因不同。qRT-PCR结果表明,FtC4H在小米荞的花和叶中相对表达量显著高于云荞1号。
[1] | 中国植物志编辑委员会. 中国植物志. 第25卷. 北京: 科学出版社, 1998. |
[2] | 阮池银. 云南小凉山彝族苦荞文化的环境人类学研究. 昆明:云南大学, 2012. |
[3] |
Bai C Z, Feng M L, Hao X L, et al. Rutin,quercetin,and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genetics and Molecular Research, 2015, 14(4):19040-19048.
doi: 10.4238/2015.December.29.11 pmid: 26782554 |
[4] |
Hu Y, Hou Z, Yi R, et al. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice. Food and Function, 2017, 8(8):2803-2816.
doi: 10.1039/C7FO00359E |
[5] |
Bao T, Wang Y, Li Y T, et al. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. Journal of Zhejiang University-Science B, 2016, 17(12):941-951.
doi: 10.1631/jzus.B1600243 |
[6] |
Liu C L, Chen Y S, Yang J H, et al. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. Journal of Agricultural and Food Chemistry, 2008, 56(1):173-178.
doi: 10.1021/jf072347s |
[7] | 李玉英, 赵淑娟, 白崇智, 等. 苦荞异槲皮苷对人胃癌细胞SGC-7901增殖及凋亡的影响. 食品科学, 2014, 35(3):193-197. |
[8] |
Hou Z X, Hu Y Y, Yang X B, et al. Antihypertensive effects of tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats. Food and Function, 2017: 8(11):4217-4228.
doi: 10.1039/C7FO00975E |
[9] |
Choi S Y, Choi J Y, Lee J M, et al. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells. Food and Function, 2015, 6(8):2664-2670.
doi: 10.1039/C5FO00639B |
[10] |
Russell D W, Conn E E. The cinnamic acid 4-hydroxylase of pea seedlings. Archives of Biochemistry and Biophysics, 1967, 122(1):256-258.
pmid: 4383827 |
[11] |
Schilmiller A L, Stout J, Weng J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism,growth and development in Arabidopsis. The Plant Journal, 2009, 60(5):771-782.
doi: 10.1007/s10725-019-00494-2 |
[12] |
Park N I, Park J H, Park S U. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots. Molecular Biotechnology, 2012, 50(2):114-120.
doi: 10.1007/s12033-011-9420-8 pmid: 21626264 |
[13] |
Singh K, Kumar S, Rani A, et al. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Functional and Integrative Genomics, 2009, 9(1):125-134.
doi: 10.1007/s10142-008-0092-9 |
[14] | 曾祥玲, 郑日如, 罗靖, 等. 桂花C4H基因的克隆与表达特性分析. 园艺学报, 2016, 43(3):525-537. |
[15] | 程俊, 程曦, 盛玲玲, 等. 砀山酥梨肉桂酸4-羟化酶基因的克隆及表达分析. 农业生物技术学报, 2016, 24(11):1698-1708. |
[16] |
Millar D J, Long M, Donovan G, et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry, 2007, 68(11):1497-1509.
pmid: 17509629 |
[17] | Baek M H, Chung B Y, Kim J H, et al. cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean blackraspberry. Biochemistry and Molecular Biology Reports, 2008, 41(7):529-536. |
[10] | Liu W, Zhu D, Liu D, et al. Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifoliumin response to K deficiency. Plant and Soil, 2010, 335,325-337. |
[18] |
Cheng S Y, Yan J P, Meng X X, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba. Acta Physiologiae Plantarum, 2018, 40:1-15.
doi: 10.1007/s11738-017-2577-4 |
[19] | 黄利娜, 吴光斌, 匡凤元, 等. 莲雾果实C4H基因的克隆及在NO处理下的表达分析. 集美大学学报(自然科学版), 2020, 25(2):105-112. |
[20] | 陈鸿翰, 袁梦求, 李双江, 等. 苦荞肉桂酸羟化酶基因(FtC4H)的克隆及其UV-B胁迫下的组织表达. 农业生物技术学报, 2013, 21(2):137-147. |
[21] | 刘荣华, 王丽, 孙朝霞, 等. 苦荞FtC4H基因的cDNA克隆及生物信息学分析. 山西农业大学学报(自然科学版), 2017, 37(11):767-773. |
[22] | 王轶男, 陈雪, 盖颖. 毛白杨木质素合成酶基因F5H克隆与生物信息学分析. 广东农业科学, 2014, 41(20):131-135. |
[23] |
Fahrendorf T, Dixon R A. Stress responses in alfalfa (Medicago sativa L.). XVIII:Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Archives of Biochemistry and Biophysics, 1993, 305:509-515.
pmid: 8373188 |
[24] | Teutsch H G, Hasenfratz M P, Lesot A, et al. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase,a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(9):4102-4106. |
[11] | Yan Q, Si J, Cui X X, et al. The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regulation, 2019, 88(2):139-149. |
[25] | 冯艺川, 赵洋, 全雪丽, 等. 膜荚黄芪C4H基因的克隆及表达分析. 分子植物育种, 2021, 19(1):130-136. |
[1] | 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性[J]. 作物杂志, 2021, (4): 19 |
[2] | 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价[J]. 作物杂志, 2021, (3): 1927 |
[3] | 靳建刚, 田再芳. 山西北部地区引种苦荞品种的灰色关联度分析[J]. 作物杂志, 2021, (2): 5256 |
[4] | 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发[J]. 作物杂志, 2021, (1): 3846 |
[5] | 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 3340 |
[6] | 杨学乐, 张璐, 李志清, 何录秋. 苦荞种质资源表型性状的遗传多样性分析[J]. 作物杂志, 2020, (5): 5358 |
[7] | 李春花, 黄金亮, 尹桂芳, 王艳青, 卢文洁, 孙道旺, 王春龙, 郭来春, 洪波, 任长忠, 王莉花. 苦荞粒形相关性状的遗传分析[J]. 作物杂志, 2020, (3): 4246 |
[8] | 马成瑞,向达兵,万燕,欧阳建勇,宋月,唐正松,刘建英,赵钢. 不同苦荞品种花和籽粒空间分布特征及差异分析[J]. 作物杂志, 2020, (1): 3540 |
[9] | 杨甜,张永清,董馥慧,马星星,薛小娇. 不同水分条件下不同抗旱性苦荞根系生长规律研究[J]. 作物杂志, 2019, (6): 7682 |
[10] | 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183190 |
[11] | 宋丽芳,冯美臣,张美俊,肖璐洁,王超,杨武德,宋晓彦. 外源硒对苦荞生长发育及子粒硒含量的影响[J]. 作物杂志, 2019, (3): 150154 |
[12] | 马名川,刘龙龙,张丽君,崔林,周建萍. EMS诱变刺荞的形态突变体鉴定与分析[J]. 作物杂志, 2019, (3): 3741 |
[13] | 崔娅松, 王艳, 杨丽娟, 吴朝昕, 周飘, 冉盼, 陈庆富. 米苦荞果壳率及其相关性状的遗传研究[J]. 作物杂志, 2019, (2): 5160 |
[14] | 赵鑫,陈少锋,王慧,刘三才,杨修仕,张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 2732 |
[15] | 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 5361 |
|