作物杂志,2023, 第3期: 101–108 doi: 10.16035/j.issn.1001-7283.2023.03.014

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

湘早籼45号头季与再生季产量及镉积累分配对灌溉方式的响应

袁帅(), 陈基旺(), 陈平平, 易镇邪()   

  1. 湖南农业大学农学院/作物生理与分子生物学教育部重点实验室,410128,湖南长沙
  • 收稿日期:2022-02-21 修回日期:2022-04-01 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 易镇邪,研究方向为作物高产生理与资源高效利用,E-mail:yizhenxie@126.com
  • 作者简介:袁帅,研究方向为水稻高产高效栽培技术,E-mail:1395396254@qq.com;|陈基旺为共同第一作者,研究方向为水稻高产高效栽培技术,E-mail:980167116@qq.com
  • 基金资助:
    国家重点研发计划“粮食丰产增效科技创新”重点专项(2018YFD0301005);国家重点研发计划“粮食丰产增效科技创新”重点专项(2017YFD0301501)

Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods

Yuan Shuai(), Chen Jiwang(), Chen Pingping, Yi Zhenxie()   

  1. College of Agronomy, Hunan Agricultural University/Key Laboratory of Crop Physiology and Molecular Biology, Ministry of Education, Changsha 410128, Hunan, China
  • Received:2022-02-21 Revised:2022-04-01 Online:2023-06-15 Published:2023-06-16

摘要:

为给再生稻的安全生产提供科学依据,以湖南省主栽早稻品种湘早籼45号为材料,比较研究2种灌溉方式(淹水灌溉和间歇灌溉)下水稻头季与再生季的产量、土壤有效镉含量、各器官镉含量与积累量、镉转移系数与富集系数。结果表明,间歇灌溉显著提高水稻生物量及产量,头季产量间歇灌溉比淹水灌溉高13.86%,再生季产量也以间歇灌溉处理略高;淹水灌溉处理显著降低水稻镉含量和积累量,其中头季与再生季糙米镉含量分别较间歇灌溉处理降低37.93%与43.90%,植株总镉积累量分别下降52.41%与53.40%。灌溉方式对头季与再生季镉转移系数影响规律不一致,头季镉转移系数淹水灌溉显著大于间歇灌溉,再生季表现相反。淹水灌溉显著降低土壤有效镉含量与水稻镉富集系数,头季与再生季成熟期淹水处理土壤有效镉含量相比间歇灌溉分别降低10.81%与16.92%。可见,淹水灌溉使水稻产量、糙米镉含量、土壤有效镉含量与镉富集系数降低,但头季与再生季降幅存在一定差异,产量降幅以头季稻较大,糙米镉含量与积累量、土壤有效镉含量降幅以再生季较大。

关键词: 再生稻, 灌溉方式, 产量, 镉积累分配

Abstract:

To provide a scientific basis for the safe production of ratooning rice, taking Xiangzaoxian 45, the main early rice variety in Hunan province, as the material, the yield, soil available Cd content, Cd content and accumulation in various organs, Cd transfer coefficient and enrichment coefficient of rice in main crop and ratooning season under two irrigation methods (flooded irrigation and intermittent irrigation) were compared. The results showed that, intermittent irrigation significantly increased the biomass and yield of rice, and the yield of main crop in intermittent irrigation treatment was 13.86% higher than that of flooded irrigation treatment, and the yield of ratooning rice was also slightly higher in intermittent irrigation treatment. Compared with intermittent irrigation, flooded irrigation significantly decreased the Cd content and accumulation of rice, in which Cd content in brown rice decreased by 37.93% and 43.90%, respectively, and the total Cd accumulation in plants decreased by 52.41% and 53.40% in main crop and ratooning season, respectively. Effects of irrigation methods on Cd transfer coefficient in the main crop was inconsistent with that in ratooning rice. The Cd transfer coefficient in flooded irrigation treatment was significantly higher than in intermittent irrigation treatment in main crop, but ratooning rice was the opposite. Flooding irrigation significantly reduced the content of soil available Cd and Cd enrichment coefficient of rice. Compared with flooded irrigation treatment, intermittent irrigation reduced the contents of soil available Cd contents by 10.81% and 16.92% at maturity stage of main crop and ratooning rice, respectively. It could be seen that flooding irrigation reduced rice yield, Cd content in brown rice, available Cd content in soil and Cd enrichment coefficient, but there was a certain difference between main crop and ratooning rice. The decline of rice yield was larger in main crop, and that of Cd content and accumulation in brown rice and soil available Cd content were larger in ratooning season.

Key words: Ratooning rice, Irrigation method, Yield, Cd accumulation and distribution

表1

不同灌溉方式下头季与再生季产量及其构成因素

季别
Season
处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗总粒数
Total grain
per panicle
穗实粒数
Filled grain
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (t/hm2)
实际产量
Actual yield
(t/hm2)
头季
Main crop
G1 3.75b 81.89a 68.39a 83.51a 25.54a 6.56b 6.42b
G2 3.89a 83.75a 70.99a 84.76a 26.57a 7.33a 7.31a
再生季
Ratooning rice
G1 6.21a 62.96a 32.96a 52.35a 22.18a 4.54a 4.46a
G2 6.08a 65.34a 33.67a 51.53a 22.45a 4.60a 4.51a

表2

不同灌溉方式下头季与再生季干物质积累

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.81b 4.86b 4.36b 4.48b 3.77b 2.76b 2.62b 4.22b
G2 1.24a 5.95a 5.25a 5.44a 4.31a 3.05a 2.78a 4.53a
叶Leaf G1 0.66b 1.52b 1.34b 1.41b 1.43b 1.43a 0.76a 1.00b
G2 0.78a 2.07a 2.11a 1.72a 1.55a 1.12b 0.78a 1.25a
穗Panicle G1 - - 2.04b 5.68a 7.05b 0.75b 2.04b 5.54b
G2 - - 2.27a 4.01b 7.82a 1.04a 2.97a 5.66a
稻桩Stubble G1 - - - - - 1.76b 1.29b 0.91b
G2 - - - - - 1.81a 1.40a 1.08a

表3

不同灌溉方式下头季与再生季土壤有效镉含量

季别Season 处理Treatment 分蘖盛期Peak tillering 孕穗期Booting 齐穗期Full heading 灌浆中期Mid-filling 成熟期Maturity
头季Main crop G1 0.46b 0.45b 0.34b 0.56b 0.66b
G2 0.56a 0.57a 0.38a 0.72a 0.74a
再生季Ratooning rice G1 ? ? 0.43b 0.49b 0.54b
G2 ? ? 0.54a 0.57a 0.65a

表4

不同灌溉方式下头季与再生季不同生育阶段各器官镉积累量

季别
Season
生育阶段
Growth stage
处理
Treatment
总积累量
Total accumulation

Stem

Leaf

Panicle
稻桩
Stubble
头季Main crop 移栽―齐穗 G1 5108.53b 4662.29b 232.16b 214.09b -
G2 7204.05a 6512.58a 428.66a 262.81a -
齐穗―灌浆中期 G1 868.08a 679.49a -15.54a 204.13a -
G2 374.45b 478.33b -122.31b 18.43b -
灌浆中期―成熟 G1 7550.43b 7171.01b -66.23b 445.65b -
G2 20 847.53a 18 858.10a 3.22a 1986.21a -
再生季Ratooning rice 头季收割―齐穗 G1 465.69b 2283.13b 280.36b 155.76b -2253.55b
G2 9891.64a 5798.50a 528.42a 413.49a 3151.23a
齐穗―灌浆中期 G1 7771.17a 1306.99a 23.74a 431.58b 6008.86a
G2 898.60b -449.22b -97.54b 950.60a 494.77b
灌浆中期―成熟 G1 4194.79b 6752.98b 150.79b 1680.59b -4389.57b
G2 15 846.50a 13 310.77a 423.83a 2573.71a -461.82a

表5

不同灌溉方式下头季与再生季各器官镉富集系数

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.70a 1.41a 3.15b 2.14a 5.00b 1.90b 2.81b 4.58b
G2 0.39b 1.03b 3.26a 1.83b 8.28a 3.52a 3.39a 6.29a
叶Leaf G1 0.28a 0.37b 0.51a 0.28b 0.13b 0.45b 0.82b 0.85b
G2 0.23b 0.51a 0.53a 0.24a 0.21a 0.88a 0.98a 1.04a
穗Panicle G1 - - 0.30a 0.13b 0.53b 0.48b 0.59b 0.77b
G2 - - 0.31a 0.16a 0.72a 0.74a 0.81a 1.06a
稻桩Stubble G1 - - - - 3.87b 2.97b 8.61b 7.95b
G2 - - - - 4.62a 10.45a 13.49a 14.43a

表6

不同灌溉方式下头季与再生季成熟期穗各部位镉富集系数

季别
Season
处理
Treatment
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
头季
Main crop
G1 0.36b 0.65b 0.27b 0.25b
G2 1.85a 4.40a 0.38a 0.35a
再生季
Ratooning rice
G1 0.05b 0.12b 0.03b 0.03b
G2 0.08a 0.17a 0.03a 0.04a

表7

不同灌溉方式下头季与再生季各器官镉含量

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
根Root G1 4.78a 7.07a 5.23b 3.97b 19.01b 4.44b 15.89b 10.64b
G2 2.87b 6.63b 7.54a 5.70a 59.51a 19.53a 27.11a 12.83a
茎Stem G1 0.32a 0.64a 1.07b 1.19b 3.32b 0.83b 1.37b 2.44b
G2 0.22b 0.58b 1.24a 1.36a 5.99a 1.90a 1.92a 4.12a
叶Leaf G1 0.13a 0.17b 0.17b 0.15b 0.09b 0.20b 0.40b 0.46b
G2 0.13a 0.29a 0.20a 0.18a 0.15a 0.47a 0.56a 0.68a
穗Panicle G1 - - 0.11b 0.07b 0.22b 0.21b 0.29b 0.43b
G2 - - 0.12a 0.11a 0.52a 0.40a 0.46a 0.70a
稻桩Stubble G1 - - - - 2.57b 1.29b 4.90b 4.26b
G2 - - - - 3.34a 5.64a 7.65a 9.45a

表8

不同灌溉方式下成熟期穗各部位镉含量

处理
Treatment
头季Main crop 再生季Ratooning rice
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
G1 0.24b 0.43b 0.27b 0.18b 0.52b 1.22b 0.32b 0.23b
G2 1.34a 3.18a 0.33a 0.29a 1.02a 2.16a 0.45a 0.41a

表9

不同灌溉方式下头季与再生季各器官镉转移系数

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.068b 0.088a 0.204a 0.301a 0.175a 0.186a 0.086a 0.230b
G2 0.075a 0.090a 0.165b 0.238b 0.101b 0.097b 0.071b 0.321a
叶Leaf G1 0.027b 0.024b 0.033a 0.039a 0.005a 0.044a 0.025a 0.043b
G2 0.045a 0.044a 0.027b 0.031b 0.003a 0.024b 0.020b 0.053a
穗Panicle G1 - - 0.020a 0.019b 0.011a 0.047a 0.018a 0.039b
G2 - - 0.015b 0.021a 0.009a 0.020b 0.017a 0.054a
稻桩Stubble G1 - - - - 0.135a 0.290a 0.264b 0.400b
G2 - - - - 0.056b 0.289a 0.282a 0.736a

表10

不同灌溉方式下头季与再生季成熟期穗各部位镉转移系数

季别
Season
处理
Treatment
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
头季
Main crop
G1 0.013b 0.023b 0.010a 0.009a
G2 0.023a 0.053a 0.005b 0.004b
再生季
Ratooning rice
G1 0.049b 0.115b 0.026b 0.030b
G2 0.079a 0.168a 0.032a 0.035a
[1] 旷娜, 莫文伟, 唐启源, 等. 再生稻与晚稻产量形成对比分析. 杂交水稻, 2021, 36(6):48-53.
[2] Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004, 17(5):549-553.
pmid: 15688862
[3] Clemens S, Aarts M G M, Thomine S, et al. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013, 18(2):92-99.
doi: 10.1016/j.tplants.2012.08.003 pmid: 22981394
[4] Kobayashi E, Suwazono Y, Dochi M, et al. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or itai-itai disease. Biological Trace Element Research, 2009, 127(3):257-268.
doi: 10.1007/s12011-008-8239-z pmid: 18979074
[5] 史锟, 张福锁, 刘学军, 等. 不同栽培方式对籼、粳稻根表铁膜和根铁、镉含量的影响. 应用生态学报, 2003, 14(8): 1273-1277.
[6] 杨定清, 雷绍荣, 李霞, 等. 大田水分管理对控制稻米镉含量的技术研究. 中国农学通报, 2016, 32(18):11-16.
doi: 10.11924/j.issn.1000-6850.casb16030053
[7] Huang J H, Wang S L, Lin J H, et al. Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time. Paddy and Water Environment, 2013, 11(1/2/3/4):483-491.
doi: 10.1007/s10333-012-0339-x
[8] 丁紫娟, 徐洲, 田应兵, 等. 再生稻干湿交替灌溉与根区分层施氮减少温室气体排放. 灌溉排水学报, 2021, 40(7):51-58.
[9] 郑华斌, 陈其敏, 陈元伟, 等. 节水减氮对再生稻和双季稻周年产量及氮肥利用效率的影响. 生态学杂志, 2019, 38(7):2023-2029.
[10] 易镇邪, 屠乃美, 陈平平. 杂交稻新组合再生稻头季及再生季源库特征分析. 中国水稻科学, 2005, 19(3):243-248.
[11] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响. 中国水稻科学, 2009, 23(5):509-516.
doi: 10.3969/j.issn.10017216.2009.05.10
[12] 郑智华. 隆两优华占的特征特性及再生稻高产栽培技术. 现代农业科技, 2016(2):44,53.
[13] 陈基旺, 陈平平, 王晓玉, 等. 不同节位再生稻镉积累分配及其与头季稻的差异. 南方农业学报, 2020, 51(4):790-797.
[14] 蒋艳方, 陈基旺, 崔璨, 等. 杂交稻头季与再生季镉积累分配特性差异研究. 中国水稻科学, 2022, 36(1):55-64.
doi: 10.16819/j.1001-7216.2022.201108
[15] 熊若愚, 解嘉鑫, 谭雪明, 等. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响. 中国农业科学, 2021, 54(7):1512-1524.
doi: 10.3864/j.issn.0578-1752.2021.07.015
[16] Zhang H, Xue Y, Wang Z, et al. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 2009, 49(6):2246-2260.
doi: 10.2135/cropsci2009.02.0099
[17] 周欢, 原保忠, 柯传勇, 等. 灌溉水量对水稻生长和产量的影响. 灌溉排水学报, 2010, 29(2):99-101.
[18] 付景, 刘洁, 曹转勤, 等. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40(6):1056-1065.
[19] 何海兵, 杨茹, 吴汉, 等. 干湿交替灌溉下氮素形态对水稻花期光合及产量形成的影响. 西北植物学报, 2017, 37(11):140-147.
[20] 周峥嵘, 傅志强. 不同水分管理方式对水稻生长及产量的影响. 作物研究, 2012, 26(增1):5-8.
[21] 张武益, 朱利群, 王伟, 等. 不同灌溉方式和秸秆还田对水稻生长的影响. 作物杂志, 2014(2):113-118.
[22] 徐芬芬, 曾晓春, 石庆华, 等. 不同灌溉方式对水稻生长与产量的影响. 江西农业大学学报, 2005, 27(5):653-658.
[23] 周文新, 易镇邪, 屠乃美, 等. 头季稻齐穗期剑叶光合产物分配与再生稻产量的相关性. 核农学报, 2008, 22(6):860-864.
[24] Belder P, Bouman B, Cabangon R, et al. Effect of water saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65(3):193-210.
doi: 10.1016/j.agwat.2003.09.002
[25] Nishiuchi S, Yamauchi T, Takahashi H, et al. Mechanisms for coping with submergence and waterlogging in rice. Rice, 2011, 5(1):2-3.
doi: 10.1186/1939-8433-5-2
[26] Jean, Armstrong, William. Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany, 2005, 12(7):12-13.
[27] Liu J, Cao C, Wong M, et al. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. Journal of Environmental Sciences, 2010, 15(7):312-318.
[28] 胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响. 农业环境科学学报, 2013, 32(3):432-437.
[29] 刘侯俊, 胡向白, 张俊伶, 等. 水稻根表铁膜吸附镉及植株吸收镉的动态. 应用生态学报, 2007, 13(2):425-430.
[30] 易镇邪, 苏雨婷, 谷子寒, 等. 不同生育阶段间歇灌溉对镉污染稻田双季稻产量构成与镉累积的影响. 水土保持学报, 2019, 33(5):364-368.
[31] 苏雨婷, 赵英杰, 谷子寒, 等. 灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响. 作物研究, 2018, 32(3):180-187.
[32] 陈喆, 张淼, 叶长城, 等. 富硅肥料和水分管理对稻米镉污染阻控效果研究. 环境科学学报, 2015, 35(12):4003-4011.
[33] 杨小粉, 吴勇俊, 张玉盛, 等. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4):34-37.
doi: 10.3969/j.issn.1006-8082.2019.04.008
[34] 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展. 农业环境科学学报, 2016, 35(12):2260-2268.
[35] Sun L, Zheng M, Liu H, et al. Water management practices affect arsenic and cadmium accumulation in rice grains. Scientific World Journal, 2014, 39(7):1-2.
[36] Zhou H, Zhu W, Yang W T, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicology and Environmental Safety, 2018, 152(5):91-97.
doi: 10.1016/j.ecoenv.2018.01.031
[37] 程东祥, 张玉川, 马小凡, 等. 长春市土壤重金属化学形态与土壤微生物群落结构的关系. 生态环境学报, 2009, 18(4):1279-1285.
doi: 10.16258/j.cnki.1674-5906(2009)04-1279-07
[38] 侯海军, 张文钊, 沈建林, 等. 水分管理对稻田细菌丰度与群落结构的影响. 生态环境学报, 2016, 25(9):1431-1438.
doi: 10.16258/j.cnki.1674-5906.2016.09.002
[39] Bastida F, Torres I F, Romero-Trigueros C, et al. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biology & Biochemistry, 2017, 104(17):226-237.
doi: 10.1016/j.soilbio.2016.10.024
[40] Somenahally A C, Hollister E B, Yan W, et al. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science & Technology, 2011, 45(19):8328.
doi: 10.1021/es2012403
[41] 刘利成, 刘三雄, 黎用朝, 等. 水稻镉积累与调控研究进展. 中国农学通报, 2016, 32(24):1-5.
doi: 10.11924/j.issn.1000-6850.casb15110029
[42] Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 2012, 83(14):33-46.
doi: 10.1016/j.envexpbot.2012.04.006
[43] 吴照祥, 孙小艳, 刘腾云, 等. 中、轻度污染农田杂交水稻对Cd的吸收和累积分布. 江西农业大学学报, 2019, 41(3):432-430.
[44] Kobayashi N I, Tanoi K, Hirose A, et al. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. Journal of Experimental Botany, 2012, 64(2):507-517.
doi: 10.1093/jxb/ers344
[45] 史磊, 郭朝晖, 梁芳, 等. 水分管理和施用石灰对水稻镉吸收与运移的影响. 农业工程学报, 2017, 33(24):111-117.
[46] 崔晓荧, 秦俊豪, 黎华寿. 不同水分管理模式对水稻生长及重金属迁移特性的影响. 农业环境科学学报, 2017, 36(11):2177-2184.
[47] 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理. 生态学报, 2007, 27(9): 3930-3939.
[48] 傅友强, 于晓莉, 杨旭健. 干湿交替诱导水稻根表铁膜形成的基因表达谱分析. 中国水稻科学, 2017, 31(2):133-148.
doi: 10.16819/j.1001-7216.2017.6115
[49] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4):392-401.
[50] 居学海, 张长波, 宋正国, 等. 水稻籽粒发育过程中各器官镉积累量的变化及其与基因型和土壤镉水平的关系. 植物生理学报, 2014, 50(5):634-640.
[1] 张国忠, 李娟, 李毓才, 金寿林, 洪汝科, 黄大军, 普世皇, 施从波, 段自林, 马迪, 陈丽娟. 氮肥减施与移栽密度对杂交粳稻滇禾优615产量和食味品质的影响[J]. 作物杂志, 2023, (3): 109–115
[2] 马义虎, 何贤彪, 陈剑, 汤学军, 王旭辉, 何豪豪, 金羽清, 齐文, 蒋海凌, 周翠. 秧龄对浙东南地区优质稻产量和品质的影响[J]. 作物杂志, 2023, (3): 116–125
[3] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[4] 邢丕鹏, 黄彦峰, 易思媛, 兰儒剑, 潘圣刚, 莫钊文, 田华, 段美洋, 唐湘如. 抽穗期叶面喷施鸟氨酸对香稻产量、品质以及2-乙酰基-1-吡咯啉生物合成的影响[J]. 作物杂志, 2023, (3): 134–138
[5] 李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响[J]. 作物杂志, 2023, (3): 148–153
[6] 宋春燕, 万运帆, 李玉娥, 蔡岸冬, 胡严炎, 周慧, 朱波, 王斌. 温度和CO2浓度升高下双季稻茎蘖动态、成穗率与产量的关系[J]. 作物杂志, 2023, (3): 159–166
[7] 徐茜, 曾新宇, 肖波, 李保证, 张兴端. 叶面肥对叶菜型甘薯茎尖产量和品质的影响[J]. 作物杂志, 2023, (3): 183–187
[8] 郭书磊, 王瑛, 魏良明, 张新, 刘焱, 吴伟华, 卢道文, 雷晓兵, 王振华, 鲁晓民. 不同生态条件下玉米产量影响因素分析[J]. 作物杂志, 2023, (3): 205–214
[9] 罗四维, 石秀楠, 贾永红, 张金汕, 王凯, 李丹丹, 王润琪, 董艳雪, 石书兵. 滴灌的毛管间距和滴头间距对匀播冬小麦光合、干物质积累和产量形成的影响[J]. 作物杂志, 2023, (3): 230–237
[10] 邵扬, 郭延平, 闵庚梅, 杨晓明. 不同功能除草剂对蚕豆生长和田间杂草的防治效果[J]. 作物杂志, 2023, (3): 254–259
[11] 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 27–34
[12] 李晶, 李鹏程, 贺永斌, 邢雅玲, 孟凡华, 周谦, 南铭. 16份俄罗斯冬小麦品种资源主要性状多元分析和综合评价[J]. 作物杂志, 2023, (3): 58–65
[13] 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 86–93
[14] 卫云飞, 李猛, 季新, 刘娟, 王付娟, 刘秋员. 不同耕播方式对秸秆全量还田下麦茬直播稻生长和产量的影响[J]. 作物杂志, 2023, (3): 94–100
[15] 杨世奇, 陈丽明, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 杂草防除对双季直播优质晚籼稻产量和稻米品质的影响[J]. 作物杂志, 2023, (2): 121–125
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!