作物杂志,2023, 第6期: 11–16 doi: 10.16035/j.issn.1001-7283.2023.06.002

• 专题综述 • 上一篇    下一篇

大麦根形态和分子水平对低磷胁迫响应研究进展

夏雪1,2,3(), 蔡康锋2,3, 刘磊2,3, 宋秀娟1,2,3, 汪军妹2,3, 岳文浩2,3()   

  1. 1浙江农林大学现代农学院,311300,浙江杭州
    2浙江省农业科学院浙江省数字旱粮重点实验室,310021,浙江杭州
    3国家大麦改良中心,310021,浙江杭州
  • 收稿日期:2023-04-10 修回日期:2023-08-08 出版日期:2023-12-15 发布日期:2023-12-15
  • 通讯作者: 岳文浩,研究方向为麦类遗传育种,E-mail:yuewh@zaas.ac.cn
  • 作者简介:夏雪,研究方向为现代农学,E-mail:m19550178020@163.com
  • 基金资助:
    浙江省自然科学基金(LQ21C130006);国家自然科学基金(32101642);国家大麦青稞产业技术体系(CARS-05- 01A-06);浙江省旱粮新品种选育重大科技专项(2021C02064)

Research Progress of Barley Response to Low Phosphate Stress in Root Morphology and Molecular Level

Xia Xue1,2,3(), Cai Kangfeng2,3, Liu Lei2,3, Song Xiujuan1,2,3, Wang Junmei2,3, Yue Wenhao2,3()   

  1. 1College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China
    2Key Laboratory of Digital Upland Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    3National Barley Improvement Center, Hangzhou 310021, Zhejiang, China
  • Received:2023-04-10 Revised:2023-08-08 Online:2023-12-15 Published:2023-12-15

摘要:

磷是大麦生长发育必需的大量元素之一,其影响大麦的产量和品质。土壤中有效磷含量低,生产上通过施用过量的不可再生磷肥来缓解低磷胁迫。只有全面掌握大麦对低磷胁迫的响应机制,培育磷高效品种,才能从根本上解决生产上对磷肥的过度依赖。本文系统总结了近些年大麦在根系形态、生理和分子水平上对低磷胁迫的响应,以及大麦耐低磷位点和磷相关基因挖掘的研究进展,对磷高效利用优质大麦育种提供参考。

关键词: 大麦, 低磷胁迫, 根系响应, QTL, CRISPR

Abstract:

Phosphorus is one of the macronutrients for barley growth and development, and affects barley yield and quality. The available inorganic phosphate content in soil is low, and excessive non-renewable phosphate fertilizer is applied in production to alleviate low phosphate stress of barley. The over use of phosphate fertilizer in production can only be effectively addressed by fully comprehending the mechanism underlying barley's sensitivity to low phosphate stress and developing varieties with high phosphate consumption efficiency. This paper systematically summarizes the research progress of barley response to low phosphate stress in root morphology, physiological aspects and molecular level, as well as the progress of identification of low phosphate tolerance loci and genes, which will facilitate to breed high-quality barley with high phosphate utilization efficiency.

Key words: Barley, Low phosphate stress, Root response, QTL, CRISPR

[1] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3):997-1005.
doi: 10.1104/pp.111.175232 pmid: 21571668
[2] Silva A D, Bruno I P, Franzini V I, et al. Phosphorus uptake efficiency, root morphology and architecture in Brazilian wheat cultivars. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(2):1055-1063.
doi: 10.1007/s10967-015-4282-3
[3] 石文静. 土壤有机磷的研究进展. 安徽农业科学, 2014, 42(33):11697-11701.
[4] Tigre W, Worku W, Haile W. Effects of nitrogen and phosphorus fertilizer levels on growth and development of barley (Hordeum vulgare L.) at Bore District, Southern Oromia, Ethiopia. American Journal of Life Sciences, 2014, 2(5):260-266.
doi: 10.11648/j.ajls.20140205.12
[5] Kostadinova S. Grain yield and protein of barley in dependence of phosphorus and potassium nutrition. Scientific Papers-Series A,Agronomy, 2014, 57:232-235.
[6] Jez J M, Lee S G, Sherp A M. The next green movement: plant biology for the environment and sustainability. Science, 2016, 353 (6305):1241-1245.
doi: 10.1126/science.aag1698 pmid: 27634525
[7] 罗园, 李东梅, 雷淼淼, 等. 青稞苗期耐低磷能力评价. 麦类作物学报, 2019, 39(12):1450-1458.
[8] Bardhan K, York L M, Hasanuzzaman M, et al. Can smart nutrient applications optimize the plant's hidden half to improve drought resistance?. Physiologia Plantarum, 2021, 172(2):1007-1015.
doi: 10.1111/ppl.v172.2
[9] Talboys P J, Healey J R, Withers P J A, et al. Phosphate depletion modulates auxin transport in Triticum aestivum leading to altered root branching. Journal of Experimental Botany, 2014, 65(17):5023-5032.
doi: 10.1093/jxb/eru284 pmid: 25086590
[10] 侯文通, 杨俐苹, 陈茹梅, 等. 遗传转化的黑曲霉植酸酶基因(phyA2)对玉米利用土壤有机磷能力的影响. 作物学报, 2013, 39(8):1-6.
[11] Péret B, Desnos T, Jost R, et al. Root architecture responses: in search of phosphate. Plant Physiology, 2014, 166(4):1713-1723.
doi: 10.1104/pp.114.244541 pmid: 25341534
[12] 陈海英, 余海英, 陈光登, 等. 低磷胁迫下磷高效基因型大麦的根系形态特征. 应用生态学报, 2015, 26(10):3020-3026.
[13] Liu D. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63(6):1065-1090.
doi: 10.1111/jipb.13090
[14] Heydari M M, Brook R M, Jones D L. The role of phosphorus sources on root diameter, root length and root dry matter of barley (Hordeum vulgare L.). Journal of Plant Nutrition, 2019, 42(1):1-15.
doi: 10.1080/01904167.2018.1509996
[15] 刘涛, 蔡秋燕, 张锡洲, 等. 磷高效型野生大麦根系形态和根系分泌物对低水平植酸态有机磷的响应特征. 植物营养与肥料学报, 2016, 22(6):1538-1547.
[16] 蔡秋燕, 张锡洲, 李廷轩, 等. 磷高效野生大麦拔节期对植酸态有机磷的利用. 中国农业科学, 2015, 48(16):3146-3155.
doi: 10.3864/j.issn.0578-1752.2015.16.005
[17] 谢欢, 张秋芳, 陈廷廷, 等. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 2022, 46(7):811-822.
doi: 10.17521/cjpe.2021.0280
[18] Seguel A, Barea J M, Cornejo P, et al. Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium tolerance in barley growing in acid soils. Crop and Pasture Science, 2015, 66(7):696-705.
doi: 10.1071/CP14305
[19] Christensen J T, Azeez M O, Labouriau R, et al. Effects of long- term contrasting lime and phosphorus applications on barley grain yield, root growth and abundance of mycorrhiza. Soil Use Manage, 2020, 38:991-1003.
doi: 10.1111/sum.v38.1
[20] Brown L K, George T S, Barrett G E, et al. Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant Soil, 2013, 372(1/2):195-205.
doi: 10.1007/s11104-013-1718-9
[21] 方爱国, 李春杰. Neotyphodium属禾草内生真菌和球囊霉属菌根真菌对野大麦生长的影响. 草业科学, 2014, 31(3):457-461.
[22] 田江, 梁翠月, 陆星, 等. 根系分泌物调控植物适应低磷胁迫的机制. 华南农业大学学报, 2019, 40(5):175-185.
[23] Oral A, Uygur V. Effects of low-molecular-mass organic acids on P nutrition and some plant properties of Hordeum vulgare. Journal of Plant Nutrition, 2018, 41(11):1482-1490.
doi: 10.1080/01904167.2018.1458866
[24] Harder H, Khol-Parisini A, Zebeli Q. Modulation of resistant starch and nutrient composition of barley grain using organic acids and thermal cycling treatments. Starch/Stärke, 2015, 67:654-662.
doi: 10.1002/star.v67.7-8
[25] Wang Y L, Almvik M, Clarke N, et al. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB Plants, 2015, 7:97-107.
[26] Delhaize E, Taylor P, Hocking P J, et al. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnology Journal, 2009, 7:391-400.
doi: 10.1111/pbi.2009.7.issue-5
[27] 张海伟, 黄宇, 叶祥盛, 等. 低磷胁迫下甘蓝型油菜酸性磷酸酶对磷效率的贡献分析. 中国科学:生命科学, 2010, 40(5):418-427.
[28] 严宽, 王昌全, 李焕秀, 等. 磷水平对杂交水稻及其亲本根系酸性磷酸酶活性的影响. 中国水稻科学, 2010, 24(1):43-48.
doi: 10.3969/j.issn.1001-7216.2010.01.08
[29] Stephen M G D, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 1994, 90:791-800.
doi: 10.1111/ppl.1994.90.issue-4
[30] 刘涛, 陈海英, 余海英, 等. 低磷等胁迫下大麦叶片磷素利用特征. 植物学报, 2016, 51(4):504-514.
doi: 10.11983/CBB16028
[31] 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异. 草业学报, 2015, 24(1):88-98.
doi: 10.11686/cyxb20150112
[32] Misson J, Raghothama K G, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11934-11939.
[33] Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development, 2001, 15(16):2122-2133.
doi: 10.1101/gad.204401
[34] Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:665-693.
pmid: 15012223
[35] Zhou J, Jiao F C, Wu Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiology, 2008, 146(4):1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782
[36] Guo M N, Ruan W Y, Li C Y, et al. Integrative comparison of the role of the phosphate response1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiology, 2015, 168 (4):1762-1776.
doi: 10.1104/pp.15.00736
[37] Ruan W Y, Guo M N, Wu P, et al. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Molecular Biology, 2017, 93(3):327-340.
doi: 10.1007/s11103-016-0564-6 pmid: 27878661
[38] 罗园. 青稞苗期磷利用效率筛选及磷高效基因PHR1的克隆分析. 成都: 四川农业大学, 2018.
[39] Sega P, Kruszka K, Szewc Ł, et al. Identification of transcription factors that bind to the 5′‑UTR of the barley PHO2 gene. Plant Molecular Biology, 2020, 102(1/2):73-88.
doi: 10.1007/s11103-019-00932-9
[40] Hackenberg M, Shi B-J, Gustafson P, et al. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biology, 2013, 13(1):1-17.
doi: 10.1186/1471-2229-13-1
[41] Srivastava R, Sirohi P, Chauhan H, et al. The enhanced phosphorus use efficiency in phosphate‑deficient and mycorrhiza‑ inoculated barley seedlings involves activation of different sets of PHT 1 transporters in roots. Planta, 2021, 254(38):1-17.
doi: 10.1007/s00425-021-03652-x
[42] Hamburger D, Rezzonico E, Petétot J M-C, et al. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell, 2002, 14(4):889-902.
doi: 10.1105/tpc.000745
[43] Schünmann P H D, Richardson A E, Vickers C E, et al. Promoter analysis of the barley PHT1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology, 2004, 136(4):4205- 4214.
doi: 10.1104/pp.104.045823 pmid: 15542491
[44] Schünmann P H D, Richardson A E, Smith F W, et al. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany, 2004, 55(398):855-865.
pmid: 15020637
[45] Rae A L, Cybinski D H, Jarmey J M, et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology, 2003, 53(1/2):27-36.
doi: 10.1023/B:PLAN.0000009259.75314.15
[46] Gu M, Huang H L, Hisano H, et al. A crucial role for a node-localized transporter, HvSPDT, in loading phosphorus into barley grains. New Phytologist, 2022, 234:1249-1261.
doi: 10.1111/nph.v234.4
[47] 马祥庆, 梁霞. 植物高效利用磷机制的研究进展. 应用生态学报, 2004, 15(4):712-716.
[48] Guo J Y, Chen G D, Zhang X Z, et al. Mapping quantitative trait loci for tolerance to phosphorus deficiency at the seedling stage in barley. Euphytica, 2017, 213(6):114-125.
doi: 10.1007/s10681-017-1907-3
[49] Gao S Q, Xia J Q, Yuan S, et al. Novel QTL conferring phosphorus acquisition and utilization efficiencies in barley. Frontiers in Genetics, 2020, 11:580452-580461.
doi: 10.3389/fgene.2020.580452
[50] 胡德益, 蔡露, 陈光登, 等. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析. 作物学报, 2017, 43(12):1746-1759.
doi: 10.3724/SP.J.1006.2017.01746
[51] Gong X, Wheeler R, Bovill W D, et al. QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean‑like environment. Theoretical and Applied Genetics, 2016, 129(9):1657-1672.
doi: 10.1007/s00122-016-2729-8 pmid: 27193775
[52] Mascher M, Gundlach H, Himmelbach A, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651):427-448.
doi: 10.1038/nature22043
[53] Ren P R, Meng Y X, Li B C, et al. Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full-length transcriptome profiling in barley (Hordeum vulgare L.). Frontiers in Plant Science, 2018, 9:500.
doi: 10.3389/fpls.2018.00500
[54] Holme I B, Wendt T, Gil‑Humanes J, et al. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology, 2017, 95(1/2):111-121.
doi: 10.1007/s11103-017-0640-6
[55] Vlcko T, Ohnoutkova L. Allelic variants of CRISPR/Cas9 induced mutation in an inositol trisphosphate 5/6 kinase gene manifest different phenotypes in barley. Plants, 2020, 9(195):1-19.
doi: 10.3390/plants9010001
[56] 景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论. 中国科学:生命科学, 2021, 51(10):1356-1365.
[57] Qian Q, Guo L B, Smith S M, et al. Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 2015, 3:283-294.
doi: 10.1093/nsr/nww006
[58] Zeng D, Tian Z X, Rao Y C, et al. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3:17031.
doi: 10.1038/nplants.2017.31 pmid: 28319055
[59] 周思远, 毕惠惠, 程西永, 等. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21(2):431-441.
doi: 10.13430/j.cnki.jpgr.20190509001
[60] Zhang H, Wu H Y, Tian R, et al. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean. Journal of Integrative Agriculture, 2022, 21(9):2521-2537.
doi: 10.1016/j.jia.2022.07.005
[61] Liu H J, Wang J C, Zhang B B, et al. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. Annals of Botany, 2021, 128(7):919-929.
doi: 10.1093/aob/mcab115
[62] Xu C, Zhang H W, Sun J H, et al. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(1):1699-1714.
doi: 10.1007/s00122-018-3108-4
[63] Guo J Y, Chen G D, Zhang X Z, et al. Quantitative trait locus analysis of adventitious and lateral root morphology of barley grown at low and high P. Functional Plant Biology, 2018, 45(9):957-967.
doi: 10.1071/FP17271 pmid: 32291059
[1] 赵锋, 包奇军, 潘永东, 柳小宁, 张华瑜, 牛小霞. 70份大麦种质资源遗传多样性评价[J]. 作物杂志, 2023, (6): 54–61
[2] 李兴河, 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 张香云, 张建宏. 利用海岛棉染色体片段导入系定位纤维品质性状QTL[J]. 作物杂志, 2023, (5): 1–9
[3] 郜战宁, 杨永乾, 王树杰, 冯辉, 薛正刚. 143份大麦种质资源的综合评价[J]. 作物杂志, 2023, (5): 59–65
[4] 卢映吉, 杨晓梦, 普晓英, 李霞, 杨丽娥, 杨砚斌, 曾亚文. 不同季节播种和割苗对大麦优良品种农艺性状的影响[J]. 作物杂志, 2023, (3): 215–220
[5] 赵斌, 季昌好, 孙皓, 朱斌, 王瑞, 陈晓东. 多棱饲用大麦品系粮、草产量及品质的鉴定与综合评价[J]. 作物杂志, 2022, (6): 93–97
[6] 罗含敏, 熊发前, 丘立杭, 刘菁, 段维兴, 高轶静, 覃夏燕, 吴建明, 李杨瑞, 刘俊仙. 性状相关的分子标记在甘蔗分子育种中的应用研究[J]. 作物杂志, 2022, (2): 35–43
[7] 闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位[J]. 作物杂志, 2022, (2): 69–74
[8] 郜战宁, 王树杰, 冯辉, 薛正刚, 杨永乾, 宋晓朋, 介元芬. 二棱大麦品种(系)的综合评价[J]. 作物杂志, 2022, (1): 70–76
[9] 余镁霞, 邓浩东, 谭景艾, 宋贵廷, 吴光亮, 陈利平, 刘睿琦, 邹安东, 贺浩华, 边建民. 利用染色体片段置换系定位低温影响水稻萌芽期根长和芽长QTL[J]. 作物杂志, 2021, (6): 36–45
[10] 苏代群, 陈亮, 李锋, 武琦, 白君杰, 邹德堂, 王敬国, 刘化龙, 郑洪亮. 利用高密度遗传图谱发掘水稻抽穗期新位点[J]. 作物杂志, 2021, (6): 58–61
[11] 邓超超, 王蕾, 徐也, 周琦, 宿翠翠, 蔡小斌, 缪平贵, 赵海鹏, 张燕, 王育才, 张想平. 施氮量和播种量对大麦[2011(07)814]鲜叶产量和品质的影响[J]. 作物杂志, 2021, (5): 108–113
[12] 宋瑞娇, 冯彩军, 齐军仓. 富氢水对干旱胁迫下大麦种子萌发及幼苗生物量分配的影响[J]. 作物杂志, 2021, (4): 206–211
[13] 周元成, 陈爱萍, 曹永立, 王镇, 赵玉坤, 侯东红, 解丽丽. 大麦籽粒灌浆期β-淀粉酶积累动态与气象因子关系研究[J]. 作物杂志, 2020, (6): 123–127
[14] 王蕾,王悦,严宗山,李润喜,谢忠清,张自强,张想平. 大麦籽粒淀粉和β-葡聚糖积累特性研究[J]. 作物杂志, 2020, (2): 119–124
[15] 德木其格,刘志萍,王磊,王金波,齐海祥,徐寿军. 氮肥对大麦灌浆期叶片光合性能的影响及其相关性分析[J]. 作物杂志, 2020, (1): 103–109
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!